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ETD: An Efficient Time Delay Attack Detection
Framework for UAV Networks

Wenbin Zhai , Liang Liu , Youwei Ding, Shanshan Sun, and Ying Gu

Abstract— In recent years, Unmanned Aerial Vehicle (UAV)
networks are widely used in both military and civilian scenarios.
However, due to the distributed nature, they are also vulnerable
to threats from adversaries. Time delay attack is a type of internal
attack which maliciously delays the transmission of data packets
and further causes great damage to UAV networks. Furthermore,
it is easy to implement and difficult to detect due to the avoidance
of packet modification and the unique characteristics of UAV
networks. However, to the best of our knowledge, there is no
research on time delay attack detection in UAV networks. In this
paper, we propose an Efficient Time Delay Attack Detection
Framework (ETD). First, we collect and select delay-related
features from four different dimensions, namely delay, node,
message and connection. Meanwhile, we utilize the pre-planned
trajectory information to accurately calculate the real forwarding
delay of nodes. Then, one-class classification is used to train the
detection model, and the forwarding behaviors of all nodes can
be evaluated, based on which their trust values can be obtained.
Finally, the K-Means clustering method is used to distinguish
malicious nodes from benign ones according to their trust values.
Through extensive simulation, we demonstrate that ETD can
achieve higher than 80% detection accuracy with less than 2.5%
extra overhead in various settings of UAV networks and different
routing protocols.

Index Terms— Time delay attack, UAV networks, lightweight,
one-class classification, trajectory information, K-means cluster-
ing.

I. INTRODUCTION

UNMANNED Aerial Vehicle (UAV) networks are widely
used in both military and civilian scenarios such as bat-

tlefield surveillance, disaster response, farmland monitoring,
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etc [1]. UAVs often cooperate with each other to collect data in
the form of clusters, and the ground station gathers data from
UAVs for further processing. The data packet transmission
between remote power-constrained UAVs and the ground
station is generally made over multiple hops, thus forming a
multi-hop UAV network. Meanwhile, many multi-hop routing
protocols for UAV networks have been proposed to efficiently
deliver packets to the destination, such as Epidemic routing
[2], Spray and Wait routing [3], Probabilistic routing [4] and
MaxProp routing [5].

Multi-hop UAV networks are flexible, however, they also
suffer from many security threats, including external and inter-
nal threats [6]. Compared with external threats, internal threats
are more challenging and destructive for UAV networks,
attackers can launch an intrusion inside the network. For
instance, attackers can invade some UAVs in the network and
then use these compromised UAVs to attack the network, such
as packet drop attack, flood attack, replay attack and tamper
attack [7]. Attacks launched by invaded internal UAVs (i.e.,
internal attacks) could not be solely resolved by conventional
security mechanisms, such as cryptographic approaches [8].

Time delay attack is a type of internal attack where mali-
cious nodes deliberately delay the transmission of received
packets before forwarding them to the destination. In UAV
networks, time delay attack has the following two key char-
acteristics: (1) It is ubiquitous and harmful to UAV networks,
especially in time-sensitive application scenarios. Taking the
military reconnaissance and strike mission as an example,
if packets containing the target information are maliciously
delayed, wrong decisions may be made, and even the mission
will fail. (2) It is easy to implement and difficult to detect.
Unlike packet tamper attack, time delay attack does not need
to break the cryptographic protection and modify the packets.
Meanwhile, compared with packet drop, replay and flood
attacks, time delay attack is more covert, making it difficult
to detect.

However, in recent years, existing works on internal attack
detection in UAV networks focus on packet drop attack, flood
attack, replay attack and tamper attack [9], [10], [11]. To the
best of our knowledge, there is no research on time delay
attack in UAV networks. Although there are a few studies
on time delay attack in other networks [12], [13], [14], [15],
UAV networks have many unique characteristics, such as high
mobility, sparse distribution, intermittent connectivity, unstable
link quality and store-carry-forward (SCF) mechanism, which
cause the existing time delay attack detection approaches
inefficient and inapplicable in UAV networks.
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We illustrate time delay attack in UAV networks in more
detail. As shown in Fig. 1, there are two UAVs u1, u2 and a
ground station g0. At t1, UAV u1 sends a data packet m with
a delay constraint td to g0. As shown in Fig. 1(a), since u2 is
closer to the destination g0 than u1 and u1 can communicate
with u2, u1 will send m to u2 at t1, and u2 will receive m from
u1 at t2. Then, since there is no UAV which can communicate
with u2 at t2, u2 will store and carry m until it encounters
g0 at t3. If u2 is a benign node, it will forward m to g0 at t3 and
g0 will receive m at t4, and the delivery delay of m is t4 − t1,
as shown in Fig. 1(c). However, if u2 is a malicious node and
launches a time delay attack, as shown in Fig. 1(b), m will
be maliciously delayed by τ s. Since u2 can still communicate
with g0 at t3′ (i.e., t3 + τ ), u2 will send m at t3′ and g0 will
receive m at t4′ (i.e., t4 + τ ), the delivery delay of m will
become t4′

− t1 (i.e., t4 − t1 + τ ), as shown in Fig. 1(d). If
t4 − t1 ≤ td ≤ t4′

− t1, the time delay attack will cause the
packet m to not be delivered in time.

The unique characteristics make time delay attack detection
in UAV networks face the following challenges: (1) Due to the
intermittent connectivity and sparse distribution, a relatively
short malicious delay introduced by the attacker may not cause
obviously abnormal fluctuations of the delivery delay. (2) Due
to the SCF mechanism, the malicious time delay attack is
likely to be misjudged as the normal SCF behavior of UAVs.
(3) Due to the complex architecture and high dynamics, there
are many factors related to the forwarding delay, such as
the load of the forwarding nodes (e.g., the queuing delay
of the packet), the link quality and so on. It is difficult to
construct the mathematical models between these factors and
the corresponding forwarding delay.

To overcome the above challenges, in this paper, we propose
an Efficient Time Delay Attack Detection Framework (ETD).
First, in order to detect time delay attack accurately and
efficiently, we evaluate the forwarding delay of nodes rather
than the delivery delay of messages. Meanwhile, we utilize the
pre-planned trajectory information of UAVs to eliminate the
adverse impact of the duration that UAVs store and carry the
packets, based on which the real forwarding delay of nodes
can be estimated. In addition, we select delay-related features
from four different dimensions, namely delay, node, message
and connection.

Then, since there are many delay-related features in UAV
networks and the collection of malicious samples is not a
trivial task, in this paper, one-class classification is utilized
for the detection model training without the requirement of
samples of anomalous behaviors. With the trained detection
model, each forwarding behavior of the node will be evaluated,
and then the trust value of each node in the network can
be calculated. Finally, the K-Means clustering method is
further utilized to distinguish malicious nodes from benign
ones according to their trust values. We summarize our key
contributions as follows:

• We model time delay attack in UAV networks and demon-
strate its uniqueness, concealment and destructiveness.
As far as we know, we are the first to study time delay
attack in UAV networks.

• We propose an Efficient Time Delay Attack Detection
Framework (ETD). First, we select delay-related fea-
tures from four different dimensions. Meanwhile, the
pre-planned trajectory information is utilized to evaluate
the real forwarding delay of nodes. Based on these
delay-related features and the real forwarding delay, one-
class classification is used for model training, and then the
K-Means clustering method is further utilized to identify
malicious nodes.

• We implement extensive simulations on the Opportunistic
Network Environment (ONE) simulator [16]. The exper-
imental results show that ETD can achieve higher than
80% detection accuracy with less than 2.5% extra over-
head in various settings of UAV networks and different
routing protocols.

The remainder of the paper is organized as follows. Section
II summarizes state-of-the-art in malicious node detection.
Section III formalizes the system model, including the network
model and attack model. In Section IV, our proposed ETD is
described in detail. We provide the performance evaluation of
ETD through extensive simulations in Section V, and conclude
this paper in Section VI.

II. RELATED WORK

In this section, we first introduce some internal cyberat-
tacks in UAV networks, and to the best of our knowledge,
there has been no research on time delay attack detection
in UAV networks. Subsequently, we summarize state-of-the-
art on time delay attack detection in static networks, such as
Cyber-physical systems (CPSes) and Precision Time Protocol
(PTP), and then illustrate their shortcomings used for UAV
networks. Table I outlines the internal attacks discussed in the
existing surveys.

A. Attacks in UAV Networks

With the rapid development of wireless communication
technology, UAV networks are praised for the flexibility and
scalability, and have become a research hotspot in recent years.
However, they are also vulnerable to various attacks, which
can be divided into internal and external attacks according
to the source of the attack. External attacks are carried
out by unauthorized users [17], whereas internal attacks are
launched by legitimate but malicious nodes inside the network
[18]. Therefore, time delay attack belongs to internal attacks,
however, existing works on internal attack detection in UAV
networks focus on packet drop attack, flood attack, replay
attack and tamper attack [19].

The authors in [9] study a colluding packet drop attack,
in which attackers cooperate with each other to launch attacks
and cover up their misbehavior. They utilize the recorded
encounter information and forwarding ratio of nodes to suspect
and then further confirm malicious nodes in the network.
In [11], three types of flood attacks are discussed and a
trust-based approach is proposed to detect malicious nodes.
The misbehavior of malicious nodes will be manifested and
lead to the loss of their reputation metrics.
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Fig. 1. Examples of the normal and abnormal forwarding behaviors in the UAV network. u1 and g0 are benign nodes. (a) The forwarding behaviors when
u2 is a benign node. (b) The forwarding behaviors when u2 is a malicious node. (c) The timeline of forwarding behaviors when u2 is a benign node. (d) The
timeline of forwarding behaviors when u2 is a malicious node.

In [20], [21], and [22], the authors consider a hybrid attack
in which attackers can launch packet drop attack, tamper attack
and replay attack simultaneously. They utilize the information
exchange between nodes to evaluate the trustworthiness of
nodes, and then the K-Means clustering is used to distinguish
nodes into benign and malicious ones. The authors in [23]
consider an advanced attack where malicious nodes only
launch the above hybrid attack on data packets sent to specific
neighbor nodes. They reduce the reputation model of all nodes
and edges into a multiple linear regression problem, and then
use the support vector machine (SVM) algorithm to identify
malicious edges, thereby further confirming malicious nodes.
In [24], an intelligent attack is proposed, in which adversaries
only implement the hybrid attack on data packets that satisfy
certain conditions. Regression and clustering algorithms are
used to evaluate the trustworthiness of nodes and distinguish
malicious nodes from benign ones.

However, as far as we know, there is no research on
time delay attack in UAV networks. Compared with other
internal attacks (e.g., packet drop, flood, replay and tam-
per attacks), time delay attack is easier to implement and

more difficult to detect, as it avoids the manipulation of
packets.

B. Time Delay Attack Detection in Other Networks

Although there is no research on time delay attack in UAV
networks, in recent years, time delay attack has attracted great
attention from researchers due to its concealment and great
threat, and have been widely studied in other networks, such
as wired networks and static wireless sensor networks (WSNs).

CPSes [25] are classic time-sensitive systems, which are
usually in the form of wired or wireless static networks. The
control signals in CPSes have stringent timeliness require-
ments, which makes CPSes vulnerable to time delay attack.
Many approaches have been proposed to detect time delay
attack in CPSes. The authors in [12] propose a perturbation
term which estimates the measurement deviation of the load
and the frequency, and then use it to detect the time delay
attack. In [14], Machining Learning (ML) is used to evaluate
the impact of time delay attacks on system stability and secu-
rity, and then two-tiered mitigation measures are developed
correspondingly to detect and defend the attack. The authors
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in [15] utilize the Recurrent Neural Networks (RNN) to access
the effect of time delay attack, then detect and characterize
the attack. Meanwhile, a deep learning model is used to
efficiently process the long-term sequence data. Based on this
work, in [26], the authors further improve the practicability
of the system by real-time processing and online analysis
of data from CPS sensors. Moreover, different strategies of
the detection model are proposed which can be adjusted
dynamically based on different objectives. In addition, other
types of internal attacks in CPSes are summarized in [27],
[28], [29], [30], [31], and [32].

PTP [33] is a precise time synchronization protocol intro-
duced in IEEE 1588 Standard. It is mainly used for the time
synchronization in packet-based networks, and can achieve
sub-microsecond transmission and synchronization accuracy,
which also makes them vulnerable to time delay attack.
In order to ensure its security, detection mechanisms against
time delay attack for PTP are needed. The authors in [13]
conduct a quantitative analysis of time delay attack and show
the vulnerability of PTP to the attack. Then, for detection
and mitigation, a new type of the PTP clock is utilized to
response and mitigate time delay attack. The authors in [34]
use the redundant paths and participants between the primary
clock and the secondary clocks to calculate the relative offset
rate and time of the secondary clocks. The clocks that drift
faster and more will be suspected under attack. Furthermore,
some other types of internal attacks in PTP are summarized
in [35], [36], [37], [38], [39], and [40].

However, the unique characteristics and SCF mechanism of
UAV networks make time delay attack more covert, compli-
cated and destructive than that in other networks, which causes
the existing detection approaches inefficient and inapplicable.
Therefore, it is significant to study time delay attack detection
in UAV networks.

III. SYSTEM MODEL

In this section, we formulate our system model. First, the
UAV network model is described, including the node model
and transmission path model. Second, we propose and analyze
the time delay attack model in UAV networks, which is
different from that in conventional wired networks and static
WSNs.

A. Network Model

The application scenarios we consider in this paper are
search and rescue missions. Many UAVs searching in an area
will send data packets back to the ground station as needed.
Without loss of generality, we abstract the three-dimensional
space into a Euclidean space, ignoring the vertical space [41].
The trajectories of UAVs are pre-planned and can be obtained
in advance through mission planning and path planning [42],
[43], [44]. Even if UAVs re-plan the trajectories during the
mission, their trajectories can also be obtained by the ground
station in advance [45], [46], [47]. Based on the pre-planned
trajectories, the ground station can further calculate encounters
between UAVs. For ease of representation, in this paper,
we abstract the communication between UAVs as an encounter

Fig. 2. An example of the UAV network.

point [45], [46]. For example, as shown in Fig. 2, UAVs
are flying along with their pre-planned trajectories, and UAV
u1 will encounter u2 at position e1 between 5s and 13s, which
means u1 and u2 can communicate with each other between
5s and 13s, and so on.

1) Node Model: In this paper, malicious nodes in UAV net-
works can launch time delay attack with a certain probability.
The ground station is a trusted authority that collects data
packets from UAVs. For convenience, both “UAV” and “node”
represent a UAV. A node can be represented as:

Node =< id, PT D A > (1)

where id represents the unique identifier of the node, such
as u1, u2 in Fig. 2, and PT D A is the probability of the node
carrying out the time delay attack. For a benign node, PT D A =

0, whereas 0 < PT D A ≤ 1 when it is a malicious node.
2) Path Model: The transmission path of a data packet m

can be represented as:

Path = ⟨(node1, node2, t s
1 , tr

2 ), (node2, node3, t s
2 , tr

3 ), . . . ,

(nodei , nodei+1, t s
i , tr

i+1), . . . ,

(noden, noden+1, t s
n , tr

n+1)⟩ (2)

where t s
i represents the time when the node nodei starts to

send m to nodei+1; tr
i+1 represents the time when nodei+1

successfully receives m from nodei . Meanwhile, tr
i+1 =

t s
i + ttrans , where ttrans denotes the duration to transmit

m from nodei to nodei+1 successfully. For convenience,
in this paper, we assume that ttrans = 1s. For example,
in Fig. 2, at the beginning (i.e., 0s), UAV u1 generates a
data packet m and sends it to the ground station g0. Accord-
ing to the pre-planned trajectory information and encounter
situation, we can deduce that there is a transmission path:
⟨(u1, u2, 5, 6), (u2, u3, 20, 21), (u3, g0, 43, 44)⟩, which means
u1 encounters u2 and transmits m to u2 at position e1 between
5s and 6s; and then u2 will store and carry m until it
encounters u3 and transmits m to u3 at position e2 between
20s and 21s; finally u3 encounters g0 and transmits m to g0 at
position e4 between 43s and 44s.
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TABLE I
COVERAGE OF CYBERATTACKS AND DETECTIONS IN EXISTING SURVEYS

B. Time Delay Attack Model

We assume that attackers have the ability to intercept UAVs
to launch attacks. In this paper, we consider a covert attack,
called time delay attack. The time delay attack maliciously
delays the transmission of data packets without tampering with
packets, and it can be easily carried out by a malicious UAV.

The time delay attack is formally described as follows.
In time delay attack, the transmission of the data packets
is maliciously delayed by τ s. Let t s′

i denote the delayed
time when the malicious node nodei starts to transmit m to
nodei+1, and tr ′

i+1 denote the delayed time when nodei+1
successfully receives m from the malicious node nodei .
In conventional wired networks and static WSNs [13], [14],
[15], the time delay attack model can be formalized as:

t s′
i = t s

i + τ (3)
tr ′

i+1 = tr
i+1 + τ (4)

However, these two equations are not always true in UAV
networks. For example, in Fig. 2, at the beginning, UAV
u1 generates a data packet m and sends it to g0. For con-
venience, we assume that each message-holder UAV transmits
m to the first UAV it will encounter. According to the
pre-planned trajectory information and encounter situation,
when there is no malicious nodes, the transmission path is
⟨(u1, u2, 5, 6), (u2, u3, 20, 21), (u3, g0, 43, 44)⟩.

Then, we assume that u2 is a malicious node and carries
out a time delay attack, namely u2.PT D A = 1. When the
duration of the attack τ = 1s, the transmission path becomes
⟨(u1, u2, 5, 6), (u2, u3, 21, 22), (u3, g0, 43, 44)⟩.

When τ = 3s, according to (3), t s
2
′ should be 23s, however,

as Fig. 2 shows, there is no UAV which can communicate
with u2 at 23s. UAV u2 has to store and carry the packet m
until it encounters u4 at 33s, and then transmits it to u4 after
another time delay attack. Therefore, the transmission path
will be ⟨(u1, u2, 5, 6), (u2, u4, 36, 37), (u4, g0, 55, 56)⟩. Here,
t s
2
′
= 36s ≫ 23s. In this situation, it is worth noting that the

time delay attack also changes the original transmission path,
which causes greater damage. Although the duration of the
attack is 3s, the delivery delay of m is increased by 12s ≫

3s. As the above example shows, time delay attack in UAV
networks is more destructive.

When τ = 10s, we found that there is no transmission
path along which u1 can deliver m to g0. In this situation,
time delay attack is equivalent to packet drop attack. However,
different from packet drop attack, whose target is to drop the
received data packets randomly with specific malicious goals,
time delay attack is to prevent the timely delivery of data
packets, thereby degrading the UAV network performance and
even causing damage to the network. Moreover, compared

with packet drop attack which can be easily detected [10],
[21], time delay attack is stealthier.

To sum up, different from that in conventional wired net-
works and static WSNs, the time delay attack model in UAV
networks can be formalized as

t s′
i =

{
t s
i + τ, if τ + ttrans ≤ tdur(i,i+1)

t ′ste(i,i+1) + τ, otherwise.
(5)

tr ′

i+1 = t s′
i + ttrans (6)

where tdur(i,i+1) denotes the duration of the encounter between
nodei and nodei+1, t ′ste(i,i+1) represents the start time of
the encounter between nodei and node′

i+1, where node′

i+1 is
the suitable next-hop node of nodei according to the routing
protocol [48] and τ + ttrans ≤ t ′dur(i,i+1).

IV. ETD

A. Overview

Fig. 3 shows the overview of ETD. It consists of four
phases: information collection, feature selection, model train-
ing and malicious node detection.

1) Information Collection (Section. IV-B): The transmitted
messages are used for information collection. Specifically,
while forwarding messages, UAVs will attach the delay-related
information, such as the receiving time and the sending time,
to the messages. The information will be finally received and
collected at the ground station along with the messages for
further processing.

2) Feature Selection (Section. IV-C): After receiving mes-
sages at the ground station, we perform a comprehensive anal-
ysis on these messages, then select appropriate delay-related
features from four different dimensions (i.e., delay, node,
message, and connection features). In addition, we further
utilize the pre-planned trajectory information of UAVs to
precisely calculate the real forwarding delay of nodes.

3) Model Training (Section. IV-D): Based on these
delay-related features and the real forwarding delay, one-class
classification is utilized for model training.

4) Malicious Node Detection (Section. IV-E): For each
communication round, we use the trained detection model
to evaluate each forwarding behavior of the node, based on
which the trust value of each node can be calculated. Then,
the K-Means clustering method is further used to distinguish
malicious nodes from benign ones according to their trust
values.

B. Information Collection

In this paper, for the collection of training samples and
the identification of malicious nodes, UAVs will attach the
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Fig. 3. The overview of ETD.

Fig. 4. The format of transmitted messages.

delay-related information to messages while forwarding the
messages. Finally, these messages are received and analyzed
at the ground station. The format of transmitted messages
is shown in Fig. 4, where D is the original payload of the
message m, Logi denotes the transmission log information
that nodei attaches to m. Logi records the delay-related
information of nodei , where id is the unique identifier of
nodei , RTi is the time when nodei receives m from nodei−1,
RDi represents the distance between nodei and nodei−1 when
m is received by nodei , RSi and RBi are the flight speed and
buffer occupancy of nodei when it receives m from nodei−1,
and RSi is a vector, indicating the flight direction and speed of
nodei , RL i is the remaining time to live (TTL) of m when it
is received by nodei , T Pi and L Qi indicate the transmission
power and link quality of nodei . Similarly, STi , SDi , SSi
and SBi indicate the time, distance, flight speed and buffer
occupancy of nodei when it sends m to nodei+1.

It is worth noting that although some delay-related informa-
tion is attached to the message, it is light-weight in saving. The
following is an example of implementing the message. We use

7 bits to encode id, so the network can support 27 UAVs, then
we assume that the network performs missions for at most two
hours [49], so RTi , RL i and STi whose unit is second can be
encoded by 13 bits. Next, we assume that the UAV has seven
adjustable power levels, so T Pi can be encoded by 3 bits.
Finally, in order to precisely reflect the distance, flight speed,
buffer occupancy and link quality of communication parties,
RDi , RSi , RBi , L Qi , SDi , SSi and SBi are all encoded by
8 bits. Therefore, the transmission log information that each
forwarding node attaches to the message can be encoded by
7 + 13 × 3 + 3 + 8 × 7 = 105 bits ≈ 13 Bytes.

Meanwhile, the experimental results (see in Section. V-G)
confirm the light-weight of our collection approach. The extra
overhead introduced to the UAV network does not exceed
2.5% in all situations. In addition, the cost of storage and
transmission can be further reduced if some efficient schemes
are adopted. For instance, excepted for the source node to
record the complete time stamp, other nodes on the transmis-
sion path can only record the relative time stamp to further
reduce the extra cost.

C. Feature Selection

Due to the characteristics and unique SCF mechanism of
UAV networks, time delay attack in UAV networks is covert
and difficult to detect. Therefore, we need to explore the
measures that possibly reveal the misbehavior of attackers in
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the UAV network. Moreover, there are many factors which
can influence the forwarding delay of messages. In addition,
some information in the packet is not efficient enough to be
directly used as the features, such as the sending time and the
receiving time of each forwarding node.

Therefore, in this section, we perform a comprehensive anal-
ysis of the collected information, and then select delay-related
features from four different dimensions, namely delay, node,
message and connection features. Meanwhile, we further uti-
lize the trajectory information of UAVs to accurately calculate
the real forwarding delay of nodes.

1) Delay Feature: If attackers continue to maliciously delay
received messages, the forwarding delay of the attackers will
be abnormally long. Therefore, we can identify the forwarding
delay of the attackers for received messages as the potential
metric to distinguish them from benign nodes. However, due
to the SCF mechanism, the forwarding delay we can directly
collect from the network (e.g., t4′

− t1, as shown in Fig. 1)
includes the duration that UAVs store and carry the packets
(e.g., t3 − t2 in Fig. 1). If we directly use the collected
forwarding delay as a feature for the model training, this
imprecise delay will affect the performance of the trained
detection model.

To overcome this issue, in this section, we utilize the
pre-planned trajectory information of UAVs to eliminate the
adverse impact of storage and carry in order to accurately
calculate the real forwarding delay, and then show how this
feature can distinguish the forwarding behaviors of attackers
from normal nodes.

In order to accurately evaluate the behavior of each forward-
ing node on the transmission path, for each data packet m that
received at the ground station, we traverse the transmission
path of m and extract all the two-hop sub-paths, which can be
formalized as:

Path ⇒

n⋃
i=2

⟨(nodei−1, nodei , t s
i−1, tr

i ),

(nodei , nodei+1, t s
i , tr

i+1)⟩ (7)

For example, in Fig. 2, at the beginning, UAV u1 gen-
erates a data packet m and sends it to the ground sta-
tion g0. As mentioned in Section. III-B, when there is no
malicious nodes in the network, the transmission path is
⟨(u1, u2, 5, 6), (u2, u3, 20, 21), (u3, g0, 43, 44)⟩. It can be split
into two two-hop sub-paths: ⟨(u1, u2, 5, 6),(u2, u3, 20, 21)⟩

and ⟨(u2, u3, 20, 21),(u3, g0, 43, 44)⟩.
For each two-hop sub-path of the data packet m, denoted

as ⟨(nodei−1, nodei , t s
i−1, tr

i ),(nodei , nodei+1, t s
i , tr

i+1)⟩, we
can utilize the trajectory information of nodei−1, nodei and
nodei+1 to predict encounters between them, and then com-
pute the real forwarding delay of node nodei to message
m, denoted as t i

r f d . The t i
r f d is proposed to evaluate the

forwarding behaviors of nodei and can be formalized as

t i
r f d = (tr

i+1 − t s
i−1) − (tste(i,i+1) − tr

i ) (8)

where tste(i,i+1) represents the start time of the
encounter between nodei and nodei+1. For example,
as mentioned above, for the two-hop sub-path

⟨(u1, u2, 5, 6), (u2, u3, 20, 21)⟩, u2 is a benign node. As Fig. 2
shows, the start time of the encounter between u2 and u3 is
20s. Therefore, t2

r f d = (21s − 5s) − (20s − 6s) = 2s.
Then, when nodei is a malicious node and launches

a time delay attack, the two-hop sub-path will become
⟨(nodei−1, nodei , t s

i−1, tr
i ), (nodei , node′

i+1, t s′
i , tr ′

i+1)⟩. And
the t i ′

r f d can be formalized as

t i ′
r f d = (tr ′

i+1 − t s
i−1) − (tste(i,i+1) − tr

i ) (9)

For instance, we assume that u2 is a malicious node and
launches a time delay attack. When the duration of the
time delay attack τ = 1s, the transmission path of m
will become ⟨(u1, u2, 5, 6), (u2, u3, 21, 22), (u3, g0, 43, 44)⟩.
Correspondingly, the extracted two-hop sub-path will become
⟨(u1, u2, 5, 6),(u2, u3, 21, 22)⟩ and t2

r f d
′

= (22s − 5s) −

(20s − 6s) = 3s. In addition, when the duration of the
time delay attack τ is 3s, the transmission path will become
⟨(u1, u2, 5, 6), (u2, u4, 36, 37), (u4, g0, 55, 56)⟩. In this sit-
uation, the corresponding two-hop sub-path will become
⟨(u1, u2, 5, 6), (u2, u4, 36, 37)⟩, which is different from the
original path, and t2

r f d
′
= (37s − 5s) − (20s − 6s) = 18s ≫

t2
r f d = 2s.

The effect of launching a time delay attack τ on the real
forwarding delay can be shown in (10).

t i ′
r f d = (tr ′

i+1 − t s
i−1) − (tste(i,i+1) − tr

i )

≥ ((tr
i+1 + τ) − t s

i−1) − (tste(i,i+1) − tr
i )

≥ (tr
i+1 − t s

i−1) − (tste(i,i+1) − tr
i ) + τ

≥ t i
r f d + τ (10)

If nodei is an attacker and launches the time delay attack
on the data packet m, the real forwarding delay of nodei to m
will reflect the abnormal forwarding behavior of nodei : t i

r f d
should be abnormally high, especially when the time delay
attack changes the original transmission path.

In addition to the delay feature mentioned above, we also
characterize the current network status in order to efficiently
deal with the time delay attack in different environments.
Therefore, we further analyze, extract and select delay-related
features from three other dimensions: node, message and
connection features.

2) Node Features: Due to the high mobility of nodes and
high dynamic of topology in UAV networks, the misbehavior
of malicious nodes will lead to the abnormal performance
of themselves. Therefore, comprehensive analysis of node
features can help the detection model better identify the
abnormal performance of the nodes, and then use it as evidence
to accuse the abnormal behaviors of malicious nodes.

For instance, attackers tend to delay rather than immediately
forward the packets when encountering with other nodes,
regardless of the occupancy of their buffers. This misbehavior
makes the buffer occupancy of the attackers often higher than
normal nodes. This phenomenon is more serious when the
overhead of the UAV network is heavy. Meanwhile, due to the
intermittent connectivity characteristic and SCF mechanism of
UAV networks, time delay attack may lead to the malicious
nodes storing and carrying more packets, which will increase
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their load. Therefore, we can utilize the buffer size and buffer
occupancy of the node to assist in distinguishing malicious
nodes from benign ones.

Moreover, the transmission power of the node reflects the
link quality and the communication range of the node, which
is related to the propagation delay and can help eliminate the
adverse impact of unstable link quality on the detection model.
Based on the transmission power, we can further utilize the
flight speed and direction of the UAV to estimate the link
quality and the communication range in the future for a period
of time [48].

As shown in Table II, the final accepted node features
are Rx Bu f Occ, Snd Bu f Occ, Bu f Si ze, Rx Dir , Rx Spd,
Snd Dir , Snd Spd and T x Pwr . It can be represented as

N F S = (Rx Bu f Occ, Snd Bu f Occ, Bu f Si ze,

Rx Dir, Rx Spd, Snd Dir, Snd Spd, T x Pwr) (11)

3) Message Features: In UAV networks, UAVs continu-
ously generate and forward messages as needed. Messages are
the main entities of the network transmission and are closely
related to the forwarding delay. The selection of delay-related
features in the messages can efficiently and accurately evaluate
the forwarding delay and identify malicious nodes.

For example, the transmission delay, which is the duration
from the first digit to the last digit of the message leaving
the sending node, depends on the packet size of the message.
Moreover, selecting the source node, destination node and
type of the message as features can better resist and identify
various time delay attacks, such as intelligent attacks against
specific source nodes [24], specific destination nodes [23]
and specific messages types. Combining these features with
other delay-related features can more accurately identify the
abnormal behaviors of malicious nodes.

At the same time, the utilization of TTL of the message
can further assist the real forwarding delay t i

r f d to evaluate
the forwarding delay of the node, thereby distinguishing the
malicious nodes from normal ones.

Therefore, as shown in Table II, in ETD, we select the
following message features: MsgSize, RemT T L , MsgSrc,
MsgDst and MsgT ype, which can be represented as

M F S = (MsgSize, RemT T L ,

MsgSrc, MsgDst, MsgT ype) (12)

4) Connection Features: Due to the high dynamic of topol-
ogy and intermittent connectivity of communications, the
transmission of data packets in UAV networks depends on
the dynamic connections between nodes. Therefore, we need
to analyze the connection features between UAVs, which can
reflect the current overall topology of the network and the
trend of future topology. Meanwhile, due to the unstable link
quality of UAV networks, using connection features can better
evaluate the channel state between nodes and the forwarding
behaviors of nodes, which will make the detection model well
resist in the influence of packet loss and retransmissions on
the detection accuracy of time delay attack.

For instance, the combination of the transmission distance
between communication parties and the transmission power

TABLE II
DESIGNED FEATURES

of the sending node can better reflect the current channel
state and the propagation delay, which is closely related to
the forwarding delay of the packets. Moreover, the collected
signal-to-interference-plus-noise (SINR) and other link quality
parameters play an important role in some scenarios as they
consider signal strength as well as interference and noise.

Therefore, as shown in Table II, the final selected connec-
tion features are Rx Dist , Snd Dist and L Q, and it can be
represented as

C F S = (Rx Dist, Snd Dist, L Q) (13)

Meanwhile, in order to eliminate the dimensional influence
between features and further improve the performance of the
detection model, we perform the feature standardization (i.e.,
Z-score normalization) [50]:

x′
=

x − x̄
σ

(14)

where x is the original feature vector, x̄ represents the mean
of the feature vectors, and σ is the standard deviation. Feature
standardization is beneficial to avoid the problems of outliers,
and can increase the difference between samples and the
discrimination between features.

D. Model Training

In UAV networks, although the benign training samples
from normal nodes are cheap and relatively easy to obtain, the
collection of labeled malicious samples for model training is
not a trivial task. Meanwhile, the correctness and generality of
the obtained malicious samples can not be guaranteed, that is,
whether these samples correctly characterize time delay attack
in UAV networks. In addition, if most of the training samples
are benign, there will be sample bias, which will seriously
affect the performance of the trained detection model.
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Fig. 5. The impact of different one-class classifiers on detection accuracy.
(a) Scenario 1. (b) Scenario 2.

To overcome the aforementioned issues, we explore how
to train the detection model and identify malicious nodes
efficiently in the absence of labeled malicious samples. In this
paper, one-class classification [51] is introduced and utilized
for model training to further improve the versatility and
practicability of ETD, where the training set only contains
normal samples of single class. One-class classification has
received considerable attention for anomaly detection in recent
years [52], [53], [54], [55]. Different from binary or multiple
classification, where the classifiers require samples of two
or more classes to find differences between them, one-class
classifiers only require samples of the normal class in order
to learn representations and features of them, and then can
identify if a new instance belongs to that class or not.

For each data packet m, we traverse its transmission path
and extract all the two-hop sub-paths, in order to analyze
and identify each forwarding behavior of each relay node
on the transmission path accurately and efficiently. For each
two-hop sub-path, we select the delay-related features of the
forwarding node nodei to obtain a training sample z, which
can be expressed as z = (x, y), where x represents the
feature vector of the forwarding node nodei , namely x =

(NFS, MFS, CFS, t i
r f d), and y is the classification label of

x: “0” (“1”) represents the forwarding behavior of nodei is
benign (malicious). After a period of data sampling, we get
the training sample set with the same y (i.e., y = 0). Then
based on the training sample set, one-class classification is
used to train our detection model. There are three common
one-class classification algorithms:

• One-class support vector machine (OC-SVM) [56]
• Local outlier factor (LOF) [57]
• Isolation forest (IF) [58]
Fig. 5 shows the detection accuracy of three one-class

classifiers on time delay attack for UAV networks in two
scenarios and four routing protocols. We choose OC-SVM as
a representative for experiments and performance demonstra-
tions due to the superior performance and space limitations.

OC-SVM [56], [59] is an extended classification algorithm
of SVM, however, different from the traditional supervised
learning-based SVM, it is an unsupervised learning algorithm.
It assumes that all training samples belong to the same
class, namely benign samples in this paper, and uses the
kernel function to map the data points of the training set
to the high-dimensional feature space. Then, it tries to find
a minimal hypersphere that contains the data points of the

training samples as many as possible. Meanwhile, it uses
slack variables to control the influence of abnormal data points
(i.e., correctly characterizes the benign forwarding behaviors).
The process can be formalized as the following optimization
problem [56]:

min
R,a

R2
+ C

n∑
i=1

ζi

s.t. ∥xi − a∥
2

≤ R2
+ ζi

ζi ≥ 0, ∀i = 1, 2, 3 . . . , n. (15)

where a is the center of the hypersphere, R > 0 is the radius
of the hypersphere, C is the penalty parameter which controls
the trade-off between the volume and the errors, ζi is the slack
variables, which are utilized to create a soft margin with the
penalty parameter C .

When identifying and classifying a new instance, if the data
point of the new instance falls within the hypersphere in the
high-dimensional feature space, the new instance belongs to
this class (i.e., the forwarding behavior of nodei is benign),
otherwise it does not belong to this class (i.e., it is malicious).
Gaussian Kernel is used as a distance function over two data
points, and only if the new instance z satisfies the following
inequality, it belongs to this class:

∥z − x∥
2

=

n∑
i=1

αi exp

(
− ∥z − xi∥

2

s2

)
≥ −R2/2 + CR (16)

where CR depends only on the Support Vectors xi and not on
z.

E. Malicious Node Detection

After training the detection model, it can be used to evaluate
the forwarding behaviors of nodes and identify time delay
attack. For each node nodei in the network, we evaluate each
forwarding behavior of the node, based on which its trust value
can be calculated. The trust value of nodei can be formalized
as

Ti =
b fi

b fi + m fi
(17)

where b fi is the number of benign forwarding behaviors of
nodei , m fi is the number of malicious forwarding behaviors.
The trust value of each node will be initiated as 0.5, with
b fi = 1 and m fi = 1, indicating complete ignorance in the
initial phase.

The basic process of malicious node detection is as follows.
First, for each communication round, we analyze each data
packet received during this communication round in the same
way as the model training phase. However, at this time,
the unlabeled samples we get include benign and malicious
samples. Then, for each unlabeled sample (i.e., a two-hop
sub-path), we think it as a classification problem, that is,
classifying the given sample and judging whether the behavior
of the current forwarding node (i.e., nodei ) is benign or
malicious. Therefore, the trained detection model is used
for classification. If the sample is marked as malicious, the
corresponding m fi of nodei is increased by 1, otherwise, it is
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TABLE III
ENVIRONMENT SETTINGS

benign and b fi is increased by 1. Finally, the trust value of
each node in the network can be calculated.

Then, the K-Means clustering method is utilized to distin-
guish malicious nodes from benign ones according to their
trust values. The output is the benign node set and the
malicious node set.

V. PERFORMANCE EVALUATION

In this section, we provide a comprehensive experimental
design and performance analysis of ETD on the Opportunistic
Network Environment (ONE) simulator [16]. In order to eval-
uate the efficiency and accuracy of ETD, we extend the ONE
simulator to support the time delay attack. All experiments
are simulated in the Lenovo XiaoXin - 15ARE 2020 (16-
Core AMD Ryzen 7 4800U with Radeon Graphics CPU @
1.80 GHz, 16 GB RAM, 512 GB SSD). Table III shows the
detailed environment settings.

A. Scenarios

Referring to the simulation scenarios in [47] and [48],
we extend and design two typical simulation scenarios inspired
by search and rescue missions. The simulation area, the
number of UAVs and the deployment location of the two
scenarios are all different.

In these two scenarios, one stationary ground station is
placed together with different number of search UAVs and
ferry UAVs. Each search UAV is assigned a 200m × 200m
region, in which the UAV should patrol and collect data.
In order to efficiently cover the mission region, each search
UAV adopts a typical search zigzag motion pattern, and each
ferry UAV moves back and forth along specified trajectory
to assist search UAVs to transmit data packets. Note that the
flight trajectory of each UAV is planned in advance, and Fig. 6
shows the trajectories of UAVs in two scenarios. Each UAV
in the network can be the source node of messages, which
will generate data packets as needed. Meanwhile, there are
some malicious UAVs in the network, which will carry out
time delay attack with a certain probability. The ground station
is a trusted authority where the detection model is deployed.
Table IV summarizes the detailed default experimental param-
eters of the two scenarios.

B. Simulation Setup

In order to conduct extensive experiments, we implement
time delay attack on four classic routing protocols based on
the ONE simulator: Epidemic routing [2], Spray and Wait
routing [3], Probabilistic routing [4] and MaxProp routing [5].

TABLE IV
DEFAULT SIMULATION SETTINGS

Meanwhile, as far as we know, there is no research on time
delay attack detection in UAV networks, so we compare the
proposed ETD with the state-of-the-art detection methods for
time delay attack in CPSes [26] and PTP [33].

Based on their prior works [14], [15], [60], the authors
in [26] propose a deep-learning based approach to characterize
and detect time delay attack in CPSes. First, a Hierarchical
Long Short-Term Memory (HLSTM) model is designed to
process the continuous data sequences, and extract the relevant
temporal features. Then, the classification module uses a
deep-learning model to characterize and detect time delay
attack. Since the method is independent of the location of
the attack, we detect and identify each node individually.
In addition, the approach is an online detection scheme, so
we set the communication round to be the same as ETD to
achieve the same detection delay and ensure fairness. All other
parameters use the default values from the article [26].

Based on their prior work [13], the authors in [33] compre-
hensively summarize and analyze time delay attack in PTP,
and then model the attack and quantify its impact. Based on
the assumption of the symmetry of the communication path
between the primary clock and the secondary clock in PTP,
the method characterizes and detects time delay attack by
observing and calculating the time offset between the primary
and secondary clocks.

C. Metric

In order to comprehensively evaluate the detection perfor-
mance, we use the accuracy (ACC), false positive ratio (FPR),
false negative ratio (FNR), and F1-score as metrics, and based
on Table V, they can be defined as ACC = (TP + TN)/(TP +

FP+FN+TN), FPR = FP/(FP+TN), FNR = FN/(FN+TP),
and F1 − score = (2 ∗ TP)/(2 ∗ TP + FP + FN). Meanwhile,
to avoid bias, we run our simulation for each experiment of
each routing protocol in each scenario with 100 rounds and
calculate the average value as the final experimental result.

D. Parameter Experiment

As mentioned earlier, the detection model is used to detect
malicious nodes, and we need to set the communication rounds
reasonably to evaluate the behavior of nodes. Therefore,
we conduct experiments to study the impact of different com-
munication rounds on detection accuracy. The communication
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Fig. 6. The trajectories of UAVs in two scenarios. (a) Scenario 1. (b) Scenario
2.

TABLE V
EXPERIMENTAL EVALUATION

Fig. 7. The impact of the communication rounds on detection accuracy.
(a) Scenario 1. (b) Scenario 2.

rounds are set to 60, 120, 240, 360, and 480s, and the
experimental results are presented in Fig. 7.

The detection performance of ETD improves with the
increase of communication rounds, because the samples used
for evaluation also increase, which can well alleviate the
impact of data distribution and single evaluation bias on the
overall results of the trust values. As a result, the calculated
trust values of nodes are more accurate. Meanwhile, we can
find that even when the communication round is only 60s, the
detection accuracy of ETD is still higher than 80% in all cases.

In addition, when the communication round increases from
60s to 240s, the detection accuracy of ETD increases rapidly.
Subsequently, the detection accuracy gradually tends to be
stable, and reaches the highest when the communication round
is 480s. Owing to the space limitations of this study, we
choose 240s as a representative for the following experiments.
The trend of the experimental results of other parameters is
roughly the same as that of the experimental results with a
communication round of 240s.

E. Detection Performance Comparison

In this section, we compare the proposed ETD with the
state-of-the-art detection schemes for time delay attack in

CPSes [26] and PTP [33], and the experimental results are
shown in Table VI.

Compared with the detection methods in CPSes and PTP,
ETD always achieves the best accuracy and F1-score (higher
than 90%) with the lowest FPR and FNR (lower than 10%)
in four routing protocols and two scenarios. The reasons are
as follows. First, ETD performs a comprehensive analysis and
extraction of delay-related features from four different dimen-
sions, thereby achieving an accurate characterization of time
delay attack in dynamic and complex UAV networks. Second,
one-class classification is utilized to effectively evaluate the
forwarding behavior of nodes. Third, the trust value of each
node can be calculated based on the forwarding behavior
evaluation of each node. ETD then utilizes the K-means
clustering method for malicious node classification to reduce
the adverse impact of single evaluation bias on the overall
evaluation results.

The detection method in CPSes [26] performs well in
scenario 1; however, its performance drops significantly in
scenario 2, which indicates the poor scalability of the method.
It cannot adapt to large-scale and complex UAV networks in
real-world environments. In addition, it achieves a high FPR,
which causes numerous false alarms that are very troublesome
in practical applications. The method utilizes the HLSTM
model to capture the time-series dependencies of data in CPSes
because the data in CPSes are continuous, and the transmission
path is fixed. However, due to the dynamic and distributed
nature of UAV networks, the data in UAV networks do not
have time continuity and correlation. Meanwhile, the transmis-
sion paths of two consecutive packets forwarded by the same
node may be different. Therefore, the proposed HLSTM model
cannot accurately identify the behavior patterns of nodes in
UAV networks.

The accuracy of the detection scheme in PTP [33] maintains
approximately 50% in all cases, and its F1-score is lower than
50% in most cases. Additionally, its FPR and FNR are as high
as 50%, which means that the scheme is infeasible and cannot
accurately distinguish time delay attack in UAV networks.
The reasons are as follows. First, the scheme relies on the
assumption that the communication paths between the two
parties are symmetric. However, the assumption does not hold
in UAV networks because of the highly dynamic topology.
Second, since PTP is only related to time features, the method
only needs to model time delay attack from the perspective of
the delay without considering other factors. However, due to
the high dynamics and complexity of UAV networks, many
factors can influence the forwarding delay, and it is difficult
to model the relationship.

F. The Influence of Different Features

To study the features, we run the simulation to investigate
the impact of different features on detection accuracy in two
scenarios, four routing protocols and three network overheads.
The experimental setup is shown in Table IV. Owing to space
limitations, in this section, we present the detection accuracy
of five key feature combinations in different situations:

1) Combination 1: All features in four different dimensions,
as shown in Table II.
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TABLE VI
RESULTS OF DIFFERENT DETECTION SCHEMES

2) Combination 2: Delay, message and connection features,
except node features.

3) Combination 3: Node, message and connection features,
except delay feature.

4) Combination 4: Only message and connection features,
except both delay and node features.

5) Combination 5: t i
r f d in the delay feature; Rx Bu f Occ,

Snd Bu f Occ, Bu f Si ze in the node features; MsgSize,
MsgSrc, MsgDst , MsgT ype in the message features;
and L Q in the connection features.

1) Complementarities and Synergies: In this part, we aim
to explore the contribution of different features to the detection
accuracy. The key results are shown in Table IV, namely the
first four feature combinations.

First, in most situations, a certain detection accuracy can be
achieved when only utilizing message and connection features,
that is, using combination 4 to detect malicious nodes. Then,
by comparing combination 2, 3 and 4, we can find that, on the
basis of the message and connection features, the utilization
of delay and node features can further improve the detection
accuracy. Moreover, in different scenarios, routing protocols
and network overheads, the delay feature and node features
have their own pros and cons, and have different contributions
to the detection accuracy: the delay feature is more conducive
to malicious node detection when the network overhead is
light, while the node features can better help the model detect
time delay attack when the network overhead is heavy.

In addition, it is worth noting that taking all features
in different dimensions into consideration, namely, utilizing
combination 1, can always achieve the best detection accuracy.

To sum up, features in different dimensions have their own
pros and cons, and all have contributions to the detection
accuracy. Through the utilization of all features from four
different dimensions, ETD achieves the complementarities and
synergies between features, thereby being able to deal with
time delay attack in different environments in UAV networks
with high detection accuracy.

2) Tradeoff Between Overhead and Accuracy: In the last
section, we investigate the influence of different feature com-
binations on the detection accuracy, and it is well-known that
the best detection accuracy can be achieved by utilizing all

features in four different dimensions. However, the approach
needs to collect features through attaching delay-related infor-
mation to the messages. Therefore, the extra cost it introduces
to the network is also the largest. In some time-sensitive
or energy-sensitive UAV application scenarios, this additional
overhead is often not negligible. They would rather sacrifice
some detection accuracy to reduce the extra overhead caused
by the attached delay-related information. Therefore, in this
section, we further study, analyze and select the delay-related
features in order to achieve the tradeoff between the extra
overhead and detection accuracy.

In addition to the experimental results shown above, in this
part, we prefer to reduce the extra overhead of the network as
much as possible while sacrificing a small amount of detection
accuracy in order to explore a good tradeoff between the extra
overhead and detection accuracy. To this end, we conduct
extensive experiments, due to space limitations, we only show
the key experimental results here.

As shown in Table VII, we compare the combination 1 and
combination 5 in two scenarios, four routing protocols and
three network overheads. It is worth noting that, compared
with combination 1, combination 5 can also achieve good
detection accuracy, while greatly reducing the introduced
additional overhead: On the one hand, the delay-related infor-
mation that each node attaches to the messages by combination
1 is 105 bits, while the extra overhead introduced by combi-
nation 5 is 7 + 13 + 13 + 8 + 8 + 8 = 57 bits, which is only
54% of combination 1. On the other hand, in most situations,
compared with combination 1, the decrease in the detection
accuracy of combination 5 is within 6%. The experimental
results reveal that ETD can effectively achieve a good tradeoff
between the extra overhead and detection accuracy.

G. Overhead Analysis

In UAV networks, the storage and computing resources
are relatively sufficient, however, there are tight communi-
cation resources [48]. Therefore, after exploring the tradeoff
between the extra overhead and detection accuracy, in this
part, we further conduct experiments on the extra overhead
ratio introduced by the transmission of collected information.
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TABLE VII
RESULTS SUMMARY

TABLE VIII
EXTRA OVERHEAD RATIO

The extra overhead ratio can be defined as

EOR =

∑M
i=1

∑Hi
j=1 j × Ai∑M

i=1 Di × Hi
(18)

where M is the number of transmitted messages, Hi is the
hop count to deliver mi to the destination, Di is the size
of the original payload of mi and Ai is the size of the
information that each forwarding node attaches to mi . In this
paper, as mentioned in Section. IV-B, Ai = 105 bits, and as
shown in Table IV, Di = 1400 Bytes.

As shown in Table VIII, in two scenarios and four rout-
ing protocols, the extra overhead ratio introduced by ETD
does not exceed 2.5%. The experimental results confirm
the light-weight of the collection approach and indicate the
versatility and practicability of ETD.

H. The Impact of Different Variables

In the following experiments, we mainly investigate the
impact of some variables on the detection performance.

1) Impact of the Duration of Time Delay Attack: In this
evaluation, we aim to explore the impact of the duration
of time delay attack on the detection performance of ETD,
including absolute time delay attack and relative time delay
attack. The performance results are depicted in Fig. 8 and 9.

It is observed that in most situations, the detection accuracy
of ETD for the absolute time delay attack is greater than 90%.
As shown in Fig. 8, with the increasing duration of absolute
time delay attack, the detection accuracy of ETD gains an
obvious improvement. This is because in UAV networks, when
the maliciously delayed time is too long, the attack will cause
obvious abnormalities in the forwarding behaviors of the nodes
and abnormal fluctuations in the forwarding delay, resulting in
the exposure of malicious nodes themselves.

Fig. 8. The impact of the duration of absolute time delay attack on detection
accuracy. (a) Scenario 1. (b) Scenario 2.

Fig. 9. The impact of the duration of relative time delay attack on detection
accuracy. (a) Scenario 1. (b) Scenario 2.

Meanwhile, due to the flooding nature of Epidemic routing,
compared with the other three routing protocols, in Epidemic
routing, the time delay attack will cause the behaviors and
performances of malicious nodes to deviate from normal nodes
more seriously. Therefore, the one-class classifier can more
accurately identify malicious behaviors based on the normal
training samples.

Moreover, in order to further study the detection perfor-
mance of ETD in different situations, we design the relative
time delay attack, which can dynamically adjust the duration
of the attack based on the transmission delay of the messages
(e.g., one-quarter, one-half, one-time, two-times, four-times of
the transmission delay). Experimental results show that on all
four routing protocols of the two scenarios, ETD can achieve
good detection accuracy, that is, higher than 88%, as shown
in Fig. 9. This is because ETD conducts a comprehensive and
in-depth analysis and feature extraction from four different
dimensions, it can adapt to time delay attack in different
environments.

2) Impact of the Probability of Time Delay Attack: As
Fig. 10 shows, the detection accuracy of ETD maintains
greater than 80% in all situations. Meanwhile, the detection
accuracy of ETD decreases as the probability of time delay
attack increases. This is because frequent time delay attack
will greatly increase the overhead and complexity of the UAV
network, which will adversely affect neighboring nodes and
make it difficult to retrieve accurate information.

Furthermore, as the complexity of the scenarios increases,
the detection accuracy of ETD does not fluctuate significantly,
indicating the practicability and versatility of ETD. This is
because the training set of ETD only contains normal samples.
They can be used in different scenarios to detect attacks that
show deviations with respect to legitimate behaviors of benign
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Fig. 10. The impact of the attack probability on detection accuracy.
(a) Scenario 1. (b) Scenario 2.

Fig. 11. The impact of the percentage of malicious nodes on detection
accuracy. (a) Scenario 1. (b) Scenario 2.

nodes in UAV networks and similarly good detection accuracy
can be achieved.

3) Impact of the Percentage of Malicious Nodes: Fig. 11
shows the impact of the percentage of malicious nodes on the
detection performance of ETD. It is found that the detection
accuracy of ETD is greater than 90% in most situations.
Meanwhile, as the percentage of malicious nodes in the UAV
network increases, so does the decline in detection accuracy.
In addition, the detection accuracy of ETD decreases as the
complexity of the scenarios increase. The overall situation
presented by the experimental results is similar to that of the
probability of the attack.

4) Impact of the Interval of Message Creation: In this part,
we explore the impact of the interval of message creation on
the performance of ETD. We keep the total number of injected
packets the same at different intervals of message creation. The
experimental results are depicted in Fig. 12.

It is observed that the detection accuracy of ETD is greater
than 90% in all situations, and the detection accuracy of ETD
is decreasing as the interval of message creation decreases.
This is because when the rate of message creation is fast,
there will be numerous messages to be sent in the buffer of
nodes in the UAV network, even if benign nodes, resulting
in the increasing queuing delay of the messages. If so, ETD
may misjudge it as a malicious node, resulting in a decrease in
detection accuracy. In this case, although the node is benign,
due to its heavy load, it does have an impact on the delivery
of the message similar to time delay attack.

5) Impact of Link Quality: As depicted in Fig. 13, with
the improvement of the link quality, the detection accuracy of
ETD is generally on the rise. This is because when the link
quality is poor, for the packet transmission between nodes,
there will be numerous data packet loss and retransmissions,
which will waste a lot of time and cause an increase in the

Fig. 12. The impact of the interval of message creation on detection accuracy.
(a) Scenario 1. (b) Scenario 2.

Fig. 13. The impact of the link quality on detection accuracy. (a) Scenario 1.
(b) Scenario 2.

load of the network. This poor network environment cause
obvious abnormalities in the forwarding behaviors of the
nodes and abnormal fluctuations in the delay of the messages,
which increases the difficulty of time delay attack detection.
However, it is noting that the detection accuracy of ETD is
greater than 90% in most situations.

VI. CONCLUSION AND FUTURE WORK

With the widespread application of UAV networks, UAV
networks also face many security problems and attack threats.
Time delay attack is a covert and threatening attack that is easy
to implement and difficult to detect. Meanwhile, the unique
characteristic and SCF mechanism of UAV networks greatly
increase the concealment and destructiveness of time delay
attack. However, to the best of our knowledge, there is no
research on time delay attack in UAV networks.

In this paper, we model time delay attack in UAV networks
and propose an Efficient Time Delay Attack Detection Frame-
work (ETD). First, we perform a comprehensive selection of
delay-related features from four different dimensions, namely
delay, node, message and connection. Meanwhile, we utilize
the pre-planned trajectory information of UAVs to accurately
calculate the real forwarding delay of nodes. Then, one-class
classification is used for model training to deal with the
detection of time delay attack. With the trained model, each
forwarding behavior of the node will be evaluated, based
on which the trust value of each node can be calculated.
Finally, the K-Means clustering method is further utilized to
distinguish malicious nodes from benign ones according to
their trust values. Extensive experimental results show that
ETD performs well in terms of the detection accuracy and
extra overhead.

Our detection method is a centralized scheme, and its detec-
tion performance depends on the collection and processing of
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the data by the ground station, which introduces an inevitable
communication overhead to UAV networks. Although we
explore the tradeoff between the detection performance and
extra overhead, it is still a challenge how to further reduce the
communication and storage overhead without sacrificing the
detection performance. As future work, we will explore to use
federated learning and distributed learning to overcome this
challenge.
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