
EKR: An Efficient K-anycast Routing in UAV
Networks

Kun Guo∗, Liang Liu∗, Wenbin Zhai∗ Youwei Ding†,
∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

Nanjing, China
Email: {gavin.k.guo, liangliu, wenbinzhai}@nuaa.edu.cn

†School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine
Nanjing, China

Email: ywding@njucm.edu.cn

Abstract—K-anycast refers to a communication model where
a message is transmitted from a source to k destinations.
Compared to multicast and unicast, k-anycast offers significant
advantages in terms of load balancing, redundancy, and improved
reliability. As far as we know, there is currently no research
on k-anycast for UAV networks. We propose an Efficient K-
anycast Routing scheme called EKR. The high dynamism of UAV
networks poses a challenge in formalizing and addressing the k-
anycast problem. Therefore, this paper utilizes predetermined
trajectory information to construct Encounter Record Tree (ER-
Tree), which converts dynamically changing network topologies
into a static graph. Based on ER-Tree, we formalize the k-
anycast problem in UAV networks and transform it into a Group
Steiner Tree problem, which is known to be NP-hard. Then
an efficient search algorithm is proposed to solve it and find
the transmission path. To evaluate the performance of EKR,
we performed simulations with the One simulator. The results
demonstrate that EKR outperforms existing protocols in terms
of delivery rate, end-to-end delay, and network overhead.

Index Terms—UAV networks, multicast, anycast, k-anycast,
trajectory-aware

I. INTRODUCTION

With the development of monolithic integrated circuit
(MIC) and imaging technology, unmanned aerial vehicles have
greatly expanded their functions in civilian and military fields
[1]. For the accomplishment of assigned tasks, UAVs need to
corporately share information through the network and take
orders from decision-making units. The key to support such
operations is how to design a reliable and efficient routing
algorithm.

The existing routing protocols for UAV networks can
be roughly classified into unicast, broadcast, multicast, and
anycast. Although extensive attention has been dedicated to
unicast and multicast, there are few researches on anycast [2].
This paper focuses on a more generalized problem of anycast
and proposes the k-anycast routing problem. In k-anycast, the
source selects any k members from the k-anycast group with n
nodes (n ≥ k) to transmit data. Unlike conventional multicast,
k-anycast doesn’t require predetermined destinations. Interest-
ingly, anycast and multicast are special cases of k-anycast,
with k equal to 1 and n, respectively.

* Corresponding author
Email address: liangliu@nuaa.edu.cn (liang Liu)

K-anycast has numerous potential applications in UAV
networks. In a large-scale network, a centralized station can
become a bottleneck when all drones send their data to it,
causing localized congestion [3]. To overcome this issue, k-
anycast can be used to transmit the collected data to any k
of the ground stations, thereby distributing the data traffic and
avoiding congestion.

It is widely acknowledged that the replica mechanism plays
a crucial role in ensuring fault tolerance and load balancing
in network communication [4]. In the event of a network
partition caused by high mobility or a single point of failure,
it is imperative that the drone can be served by the remaining
nodes. This is where k-anycast comes into play, selecting k
highly available nodes for communication even in challenging
situations. Once the nodes fail or exceed the service coverage
range, k-anycast will swiftly and automatically reselect k
available nodes, thereby enhancing the reliability.

Furthermore, in scenarios where a group of nodes with
different resources and capabilities exists in a UAV network,
k-anycast can be employed to select a specific number of
nodes that, when combined, meet a threshold for providing
equivalent functionality. By utilizing techniques like erasure
coding [5], the UAV network can recover the original data
even if some of the selected nodes fail or experience partial
loss.
K-anycast offers several advantages over traditional mul-

ticast and unicast. Firstly, it provides more flexibility since
the destinations can be dynamically selected based on needs,
unlike multicast and unicast which typically require prede-
fined destinations. Secondly, it results in higher transmission
efficiency as the source node only needs to send data to any
k nodes, helping to save communication cost and avoid net-
work congestion. On the other hand, unicast communication
involves sending separate copies of data to each recipient,
which leads to a lower utilization of network bandwidth [6].
In conclusion, k-anycast is a promising technique with the
potential to improve network performance and reliability in
many scenarios. As far as we know, there is currently no
research on k-anycast for UAV networks. Designing such an
efficient k-anycast routing algorithm requires resolving the
following challenges:

• How to efficiently sense the dynamic topology of UAV
networks? The existing mechanisms rely on posteriori
methods, which have to collect network information in
real-time [7]. However, these methods consume a large
amount of resources to maintain the topology and find
routes, especially in dynamic UAV networks.

• How to find suitable routes for k undetermined desti-
nations? K destinations selection and finding routes for
them require complex algorithms that consider factors
such as latency, congestion, and connectivity.

In this paper, we propose an efficient k-anycast (EKR)
routing algorithm for UAV networks. Inspired by path planning
algorithms [8, 9], we propose a priori-based and topology-
aware strategy. This strategy utilizes the predetermined trajec-
tories to build ER-Tree, which is simpler and more efficient
than traditional posteriori methods, such as probe mechanisms
and mobility prediction models. Additionally, we propose a
search algorithm (EKRSearch) to find routes from the source
to k destinations. The major contributions of this paper are
summarized below:

• We propose an efficient data structure called ER-Tree,
which converts dynamically changing network topologies
into a static graph. It is easy to verify whether two nodes
are reachable within the given time range by ER-Tree.

• We formalize the k-anycast problem and prove that it
is NP-hard. To address this problem, the EKRSearch
algorithm is proposed, which can efficiently select k
destinations and find routes for them.

• To verify its performance, we perform simulations with
the ONE simulator [10]. The results demonstrate that
EKR outperforms existing protocols in terms of delivery
rate, end-to-end delay, and network overhead.

The rest of the paper will consist of several parts. We present
related work in Section II. Section III and IV provide the
implementation details of EKR. Next, the evaluation of the k-
anycast algorithm and a discussion of the results are presented
in Section V. Finally, we conclude this paper.

II. RELATED WORKS

A. Unicast

Existing unicast routing protocols can be categorized as
proactive protocols, reactive protocols, and hybrid protocols.
Recently, some AI-enabled routing protocols were proposed
for UAV networks. FLRLR [11] calculates the next hop
route in real-time using fuzzy logic. This method reduces the
average number of relays by using a future reward scheme
and iterative learning. FESAIQ-Routing [12] uses simulated
annealing (SA) optimization to control the rate at which it
learns. As energy consumption becomes an important con-
straint in UAV communication [13], some efforts have been
made to design energy-efficient routing protocols. ECaD [14]
leverages movement information and residual energy level to
enable the prediction of an imminent link failure, ensuring
a robust level of communication stability. Some researches

[15, 16] group UAVs in the same geographical area into mul-
tiple clusters. These cluster-based methods make the network
more scalable, reduce energy consumption, and prolong the
network’s lifetime.

However, unicast is not suitable for multi-target transmis-
sion. Each additional stream will increase the bandwidth.

B. Multicast

The multicast protocols can be classified into tree-based
ways and mesh-based ways. Recently, some scholars have
suggested that the Global Positioning System (GPS) could be
used to set up multicast paths. CLOM [17] assumes each node
has a GPS device to identify the cluster to which it belongs. In
an overlay multicast scheme, the cluster heads form a virtual
mesh network, and the control information necessary for
preserving the virtual topology is generated exclusively when
modifications occur within the virtual topology. In SP-GMRF
[18], one node should track the location of its neighbors, which
will be used in the routing process. In a dynamic network, it
is easier to use local information than to keep track of global
routing information. Utilizing the geographical locations of
nodes eliminates the additional overhead caused by control
packets.

However, the GPS-based routing approaches are highly
dependent on GPS functionality, such as the position accuracy
of the feedback.

C. Anycast

AAODV [19] and ARDSR [20] are two anycast protocols
based on traditional unicast protocols. They select targets from
an anycast group based on the distance and route packets to
the closest member. Lenders and May [21] devised a density-
based anycast approach that considers both the proximity and
the quantity of available anycast members during the routing
decision-making process. To provide fast service with better
Quality of Service (QoS), Budyal and Manvi [22] presented
a method for multiple QoS constrained anycast routing, em-
ploying an Adaptive Neuro-Fuzzy Inference System (ANFIS).
Likewise, MQAR [23] proposed a QoS-aware anycast routing
method that takes mobility, congestion, and connection life
cycle into account. k-anycast, as a more generalized model
of anycast, is still in a relatively early stage. Some of those
protocols can be found in [3, 7, 24].

In conclusion, there is no previous work studying the k-
anycast problem in UAV networks, and conventional protocols
cannot work well due to th high mobility of UAVs.

III. PROBLEM FORMULATION

The UAV network is represented as a weighted directed
graph G = (V,E), where V = {u1, u2, ..., ui} is a set of
nodes, each representing a UAV, and E = {e1, e2, ..., ei}
is a set of edges connecting pairs of nodes. An edge e =
(ui, uj , ts, td) indicates that UAV ui will meet UAV uj at
time ts and td denotes the lifetime of the connection due to
topology changes. The transmission rate is denoted as r (bytes
per second) and the message size as b (bytes). Additionally, a

cost function C is defined over E such that each edge ei in
E has an associated transmission cost C(ei). The k-anycast
routing problem can be defined as:

kany = [s→ (D, k)]. (1)

s ∈ V is the source node of kany . D = {u1, u2, ..., us} ⊆
V represent all destinations in the k-anycast group. k is the
specific threshold where 1 ≤ k ≤ |D|.

We formally define the k-anycast routing problem as finding
out the optimal transmission paths between the source and k
destinations, with the goal of minimizing network transmission
costs.

minimize
∑

i∈|E(P)|

C (ei) (2)

Subject to: ∑
d∈D

f (P, d) = k (3)

∑
i∈|E(P)|

π (ei, b/r) = |E(P)| (4)

where

f (P, d) =

{
1, if d ∈ P
0, otherwise

, π (e, η) =

{
1, if e.td > η
0, otherwise

The function (2) states that the objective is to optimize
the transmission costs. Here, P represents the generalized
transmission paths and E(P) represents the edges of P .
(3) states that the paths generated should cover the exact k
members of the given k-anycast group D. (4) states that each
edge of the paths should exist until one message transmission
has been completed.

Consider the special case where k = |D|, k-anycast can
be reduced to a new problem: finding a minimum spanning
tree that contains all specific nodes, which is known as the
Steiner tree problem. Previous research [25] has shown that the
Steiner tree problem is NP-hard. k-anycast, which generalizes
the Steiner tree problem by involving the selection of k
undetermined nodes to construct a constrained spanning tree,
is also an NP-hard problem.

IV. THE PROPOSED K-ANYCAST ROUTING

In this section, we will introduce the details of EKR. For-
malizing and addressing the k-anycast problem is challenging
due to the high dynamism of UAV networks. Therefore, we
leverage predetermined trajectory information to calculate the
encounter windows when UAVs meet and depart from each
other. During an encounter window, a communication link will
be established and vanish upon separation.

To efficiently represent the encounter information, we pro-
pose a data structure called ER-Tree, which connects UAVs
together based on the encounter windows within a certain
period of time. Starting with a source UAV, each node in the
ER-Tree represents a path from itself to the source. Finally,
we propose an efficient algorithm (EKRSearch) for searching
k-anycast transmission paths in the ER-Tree.

trajectory of UAV encounter window

u1

u2 u3

u4

u5

u6

u7

u8

e1 e2

e3

e4

e5

e6

e7e8

e9

Fig. 1. An example of UAV trajectory.

As shown in Fig. 1, there are eight UAVs. They carried
out flight operations based on the trajectory generated by
path planning algorithms [8, 9]. At time 0, u1 generates a
message that remains valid for 40 seconds. A 2-anycast task
is defined as sending the message from the source to any
two destinations. Here, u1 aims to send the message to any
two destinations among u4, u5, and u8. The delay constraint
is set to the message’s validity period (40s), which means
that encounters occurring after 40 seconds will be ignored.
We can calculate the encounter windows from u1 during the
time frame [0,40]s based on their pre-planned trajectories.
The detailed information regarding these encounter windows
is shown in Table I. Specifically, at window e1, u1 meets u2
at 5s and the encounter lasts for 6s; at window e2, u1 meets
u3 at 20s and the encounter lasts for 5s; at window e3, u2
meets u4 at 10s and the encounter lasts for 7s; at window e4,
u2 meets u5 at 14s and the encounter lasts for 5s.

TABLE I
ENCOUNTER WINDOWS

Window UAV UAV Start time Duration

e1 u1 u2 5 6
e2 u1 u3 20 5
e3 u2 u4 10 7
e4 u2 u5 14 5
e5 u3 u6 22 7
e6 u3 u7 26 6
e7 u7 u8 28 4
e8 u8 u3 45 5
e9 u8 u3 55 6

Based on these encounter windows, EKR constructs an ER-
Tree, which represents the spatiotemporal reachability between
nodes. Spatiotemporal reachability refers to the ability to
communicate between two nodes in a network within a certain
time frame, taking into account both the physical distance and
the time required for transmission. As depicted in Fig. 2, the

ER-Tree encompasses all feasible paths from the source to
the destinations. According to the ER-Tree, there are three
transmission paths that satisfy the 2-anycast condition:

1) path1: {e1, e3, e4}. The transmission path is {u1 →
u2, u2 → u4, u2 → u5}. u1 can transmit data to u2
during the time frame [5,11]s. u2 can transmit data to u4
during the time frame [10,17]s. u2 can transmit data to
u5 during the time frame [14,19]s. The two destinations
of 2-anycast are u4 and u5.

2) path2: {e1, e3, e2, e6, e7}. The transmission path is
{u1 → u2, u2 → u4, u1 → u3, u3 → u7, u7 → u8}.
The two destinations of 2-anycast are u4 and u8.

3) path3: {e1, e4, e2, e6, e7}. The transmission path is
{u1 → u2, u2 → u5, u1 → u3, u3 → u7, u7 → u8}.
The two destinations of 2-anycast are u5 and u8.

u1

u8

u4 u5 u7

u2 u3

e1 e2

e3 e4 e6

e7

Fig. 2. An example of ER-Tree.

Among the three paths mentioned above, the transmission
delays of path1/path2/path3 are 14s/28s/28s. Among them,
path1 has the lowest delay. Furthermore, both receivers along
path2 and path3 require individual copies from the sender,
whereas path1 reuses the u1 → u2 route, utilizing fewer
copies and conserving network bandwidth. Consequently,
path1 is selected as the transmission path for the 2-anycast
routing.

The ER-Tree in the example has been pruned and trimmed
to eliminate loops. However, as the number of nodes in the ER-
Tree increases, listing all possible results and selecting the op-
timal solution becomes inefficient. Here after, the EKRSearch
algorithm provides an efficient approach to finding k-anycast
transmission paths. The construction process of the ER-Tree
and the implementation of the EKRSearch will be described
in detail later in this section.

A. Construction of the ER-Tree
The encounter record tree is generated by consolidating the

scattered encounter windows and recording potential transmis-
sion paths from the source to the destinations. In this section,
we will describe the process of constructing an ER-Tree based
on these encounter windows.
• s represents the source UAV, which sends packages and

the source of ER-Tree is v0 = (s, (s, s, 0, 0)).
• Exp represents the transmission delay constraint. We set

the value of Exp as the packet expiration time.
• Encounter window ew is denoted by (ux, uy, ts, td),

where ux and uy represent the two UAVs that encounter
each other. ts represents the start time of the encounter,
and td represents the duration.

Algorithm 1 An ER-Tree Construction Algorithm
Input: Source UAV (s), encounter windows (EC), k-

anycast group (Z), package size (b), transmission
speed (r), delay constraint (Exp)

Output: An ER-Tree rooted at node v0
Steps:
1: Initialize a priority queue q
2: Initialize root and set v0 = (s, (s, s, 0, 0))
3: q.push(v0)
4: while q is not empty do
5: vi ⇐= q.poll(), vi = (ui, ewi)
6: vi.Candi⇐= N (ui, ewi.ts, Exp)
7: for each encounter window ewj ∈ vi.Candi do
8: if ewj .td ≤ b/r then
9: continue

10: if ewj ∈ EW (v0) then
11: continue

uj ⇐= otherUAV(ewj ,ui)
12: if uj ∈ P (vi) then
13: continue
14: create child node and set c(vi) = (uj , ewj)
15: q.push(c(vi))
16: Trim(v0,Z)
17: return v0

• ER-Tree ERT is denoted by (V,E), where each node v
is represented by a two-dimensional vector (u, ew). Here,
u represents an UAV that can be reached by s directly or
indirectly through multiple hops and ew is the encounter
window between u and its previous hop. ew.ts must less
than Exp to limit the height of the ER-Tree.

• During the growth process of ER-Tree, we need to
search for candidate encounter windows until reaching
leaf nodes. The candidate encounter windows are denoted
as

v.Candi = N (v.u, v.ew.ts, Exp) (5)

where N (v.u, v.ew.ts, Exp) represent encounter win-
dows that relate to v.u and lie between v.ew.ts and Exp.
As depicted in Fig. 2, the candidate encounter windows
are (u2, u4, 10, 17) and (u2, u5, 14, 19) when considering
u2.

• EW (ERT) indicates the encounter windows that have
been used by current ER-Tree. Each encounter window
can only be used once in the construction process.

• P (v) represents the path from the source of ER-Tree to
v, which is composed of multiple UAVs.

• R(v) denotes the set of UAVs accessible from v. As
depicted in Fig. 2, R(v = (u2, e1)) = {u4, u5}, which
means that u2 can reach both u4 and u5.

The details of construction is presented in Algorithm 1. The
whole process involves expanding the tree by incorporating
new nodes based on encounter windows, until there are no
available candidate windows.

Algorithm 2 Trim
Input: ER-Tree root (v0), k-anycast group Z
Output: null
Steps:
1: if v0 is null then
2: return
3: for each child node c of v0 do
4: if R(c) ∩ Z = ∅ then
5: remove the subtree rooted at c from the ER-Tree
6: else
7: Trim(c,Z)

1) To begin, initialize the queue q and create the root node
v0, then insert v0 into q.

2) If q is empty, the construction process ends. Otherwise,
retrieve the first node at the head of the queue and
designate it as the current node vi to be processed.

3) Calculate the set of candidate encounter windows
vi.Candi, and use them to construct child nodes for
vi.

4) For each encounter window ewj in vi.Candi, if its
duration ewj .td is less than transmission time, it will
be discarded, and then go to Step 7. This constraint
ensures two nodes have sufficient time to complete the
data transmission task.

5) For each encounter window ewj in vi.Candi, if it
has already been used in the construction process (i.e.,
ewj ∈ EW (ERT)), discard it and go to Step 7 instead.

6) For each child node of vi, check whether there is a cycle
in the transmission path (i.e., uj ∈ P (vi)). If a cycle
is detected, go to Step 7. Cycles not only introduce
redundant branches to the ER-Tree, but also result in
additional routing overhead.

7) For the eligible encounter window ewj , create a child
node and insert it at the end of q, then go to Step 7.

During the initial construction of the ER-Tree, numerous
extraneous branches, which are not pertinent to k-anycast, are
often generated and must be pruned. The pruning process is
presented in Algorithm 2. For any node vi of ER-Tree, if the
subtree rooted at vi does not contain any UAV of k-anycast
group Z (i.e., R(vi) ∩ Z = ∅), it should be removed.

B. EKRSearch Algorithm

ER-Tree represents all possible paths from the source to
the k-anycast group within a specified time range. The goal
of k-anycast is to send data to any k destinations in the k-
anycast group with the lowest possible transmission cost. In
the context of ER-Tree, the objective is to find the minimum
subtree that connects the source node to any k destinations.

As mentioned earlier, k-anycast is a generalization of the
Steiner tree problem, which is known to be NP-hard. Specifi-
cally, when the scale of the network is large, the search space
will exponentially increase. Therefore, based on previous
research [26], we propose the EKRSearch algorithm.

EKRSearch is based on an iterative search for trees with
low density, where lower density implies lower average trans-
mission cost to reach the target. Each tree covers only a subset
of destinations and the final solution is obtained by taking the
union of them.

In the following part, we will introduce some key concepts
of EKRSearch and describe the process of finding transmission
paths in more detail.
• For a node v of ER-Tree, the weight of edge e between
v and its parent can be expressed as w(e):

w (e) = α
v.ew.ts
max(ts)

− v.ew.td
max(td) (6)

where v.ew.ts represents the start time of the encounter
window, v.ew.td represents the duration and α is a
constant.

• Considering that the source UAV s can reach ui through
different paths, there may exist multiple nodes v in the
ER-Tree associated with ui (i.e., v.u = ui). We group
these nodes related to the same UAV as gi. In this paper,
ui is one of the destinations in the k-anycast group.
Given a k-anycast group Z = {u1, u2, .., un}, EKR
creates a group for each destination and obtains a set
G = {g1, g2, ..., gn}.

• T (v) indicates a subtree rooted at v. If T (v) contains at
least one node belonging to group gi, it is said to cover
gi. If T (v) covers at least one group of G, T (v) is a
covering tree for G, denoted as Tv[G].

• The coverage number of Tv[G] is denoted as n(T (v)). A
k-covering tree is defined as T k

v [G].
• We define a metric called energy density (EDT) for

evaluating routing paths. The energy density of a subtree
T (v) can be expressed as follows:

EDT (T (v)) =
W (T (v))

n(T (v))
. (7)

W (T (v)) represents the total weight of T (v). Finally,
the goal of EKRSearch is to find a k-covering tree from
ER-Tree that covers exact k groups with minimal energy
density.

The pseudocode of EKRSearch is shown in Algorithm 3.
The input of the algorithm includes an encounter record tree
rooted at v0. The group set G to be covered and a given
coverage threshold k. The algorithm returns the root of a
k-covering tree T k

v0 [G]. The k-covering tree represents the
transmission paths used for k-anycast routing, which allows
a source to send data to k destinations. The algorithm is
expressed as follows:

1) Initialize Tres, kres, cover, Gres and T .
2) The stopping condition for the recursion is that the input

tree T (v) contains only one node, which is a leaf. At
this point, the single-node tree T (v) is returned directly.

3) The process of identifying subtrees must be repeated
until kres = 0. The outer loop serves to indicate that it’s
not always possible for every search to locate subtrees
that meet the kres coverage requirement. This is due

Algorithm 3 EKRSearch
Input: T (v),G′,k′
Output: A k-covering tree T k′

v [G′]
Steps:
1: Initialize: Tres = T (v), kres = k′, cover = ∅, Gres =
G′, T = null

2: stopping condition If v is a leaf then return T (v)
3: while kres > 0 do
4: recurse: for every c ∈child(v) and k′′ ∈ [1,kres]

Tc,k′′ = EKRSearch(T (c),Gres,k′′)
5: select:(choose the result tree with the lowest density)

Taug = MIN-DENSITY{Tc,k′′∪{v}}
6: update

(a)cover = cover ∪ coverSet(Taug)
(b)kres = k′ - cover.size
(c)T = T ∪ Taug
(d)inactivate the nodes associated with Taug from

Tres
(e)remove the groups associated with Taug from Gres

7: end while
8: return T

to either the fact that the number of gi present in the
search space is less than kres, or that a Taug with smaller
coverage number, has a lower energy density.

4) Initiate recursive phases to construct subtrees. It tra-
verses all child nodes of v, and for each child c, selects
a coverage number, k′′, from the range [1, kres], and
makes a recursive call. In each recursive call, the incom-
ing parameters are (T (v), Gres, k

′′), and the computed
subtree is referred to as Tc,k′′ .

5) Connect the various subtrees, Tc,k′′ , produced during the
recursive phase, to v. The resulting tree, with v serving
as the root, is referred to as an augmented tree Taug .
Subsequently, the algorithm selects the augmented tree
with the minimum energy density.

6) Compute all groups covered by Taug using
coverSet(Taug), record the result, and combine it
with the current coverage set.

7) Update kres = k′ − cover.size.
8) Update T = T ∪ Taug .
9) Remove the nodes associated with Taug from Tres

and mark them inactive for the remainder of the loop
process. Meanwhile, inactive nodes still contribute to
the computation, albeit without considering their weight.
The problem is reduced to finding the subtree with the
minimum energy density among the remaining nodes,
which must cover kres groups.

10) Remove the groups associated with Taug from Gres.
Groups already present in the coverage set are to be
ignored during processing.

11) Return T as the tree with the minimum energy density,
and its coverage number matches the required k′.

It can be concluded by referring to the works of the
literature [26]. The approximation rate of this algorithm can
reach O(h(T (v)) log k), while the time complexity reaches
O(δkO(h(T))). h(T (v)) represents the height of T (v) and δ
represents the maximum degree of T (v).

C. An Example of EKR

In this section, we will utilize a comprehensive example
to elucidate the intricacies of how EKR operates. The UAVs
follow the trajectories generated by path planning algorithms,
as depicted in Fig. 1. The encounter windows, obtained by
computing the UAV’s trajectory, are presented in Table I.
The message originates from the source node u1 and requires
delivery to u4, u5, u6, and u7. With k set to 3, the message
must be transmitted to any three of the four destinations,
subject to a 60s delay constraint.

u1

u2 u3

u1

u2 u3

u1

u2 u3

u4 u5 u6 u7 u8

u1

u2 u3

u4 u5 u6 u7 u8

u1

u2 u3

u4 u5 u6 u7 u8

u8 u3

u1

u2 u3

u4 u5 u6 u7 u8

u8 u3

u1

u2 u3

u4 u5 u6 u7 u8

u8

u3

u1

u2 u3

u4 u5 u6 u7 u8

u8

u3

u1

u2 u3

u4 u5 u6 u7

u1

u2 u3

u4 u5 u6 u7

u1

u2 u3

u4 u5 u6 u7 u8

u8

u1

u2 u3

u4 u5 u6 u7 u8

u8

(a) (b) (c)

(d) (e) (f)

u1

u2 u3

u1

u2 u3

u4 u5 u6 u7 u8

u1

u2 u3

u4 u5 u6 u7 u8

u8 u3

u1

u2 u3

u4 u5 u6 u7 u8

u8

u3

u1

u2 u3

u4 u5 u6 u7

u1

u2 u3

u4 u5 u6 u7 u8

u8

(a) (b) (c)

(d) (e) (f)

Fig. 3. The construction process of the ER-Tree.

We will construct the ER-Tree based on the encounter
windows, and Fig. 3 depicts the whole process. As shown
in Fig. 3(a), u1 has two encounter windows {e1, e2} that start
within the interval (0, 60)s. Therefore, two sub-nodes u2 and
u3 under u1 are created and e1 and e2 are removed from
the encounter window set. As shown in Fig. 3(b), u2 has
two encounter windows {e3, e4} that start within the interval
(5, 60)s. Therefore, two sub-nodes u4 and u5 under u2 are
created and e3 and e4 are removed from the encounter window
set. u3 has four encounter windows {e5, e6, e8, e9} that start
within the interval (20, 60)s. e5 indicates that u3 encountered
u6 at 22s, resulting in the creation of the sub-node u6 for u3.
Similarly, e6 indicates that u3 encountered u7 at 26s, leading
to the creation of the sub-node u7 for u3. Since both e8 and
e9 represent the encounter between u3 and u8, the earliest
one in terms of start time (i.e., e8) is selected, and the sub-
node u8 is created for u3. Finally, e5, e6 and e8 are removed
from the set of encounter windows. As shown in Fig. 3(c), u7
has one encounter windows {e7} that start within the interval
(26, 60)s. Therefore, one sub-node u8 under u7 is created and
e7 is removed from the encounter window set. For the sub-
node u8 of u3, there is one encounter window {e9} that is
related to and starts within the interval (45, 60)s. e9 represents

the encounter between u3 and u8 at 55s. However, it forms a
loop between u3, u8, and u3, so it is discarded. As depicted
in Fig. 3(d), there is one encounter window {e9} for the sub-
node u8 of u7, which is related to and starts within the interval
(28, 60)s. However, it also forms a loop between u3, u7, u8,
and u3, so it is discarded. As shown in Fig. 3(e), the tree
is pruned for the 3-anycast zone of u4, u5, u6, and u7 by
removing all u8 branches.

u1

u2 u3

u4 u5 u6 u7

u1

u2 u3

u4 u5 u6 u7

(a)

1.1 1.2

2.2 2.3 2.5 3.9

u1

u2 u3

u4 u5 u6 u7

(a)

1.1 1.2

2.2 2.3 2.5 3.9

u1

u2 u3

u4 u5 u6 u7

(b)

1.1 1.2

2.2 2.3 2.5 3.9

u1

u2 u3

u4 u5 u6 u7

(b)

1.1 1.2

2.2 2.3 2.5 3.9

u1

u2 u3

u4 u5 u6 u7

(c)

1.1 1.2

2.2 2.3 2.5 3.9

u1

u2 u3

u4 u5 u6 u7

(c)

1.1 1.2

2.2 2.3 2.5 3.9

Fig. 4. The process of EKRSearch.

Based on the constructed ER-Tree, the EKRSearch algo-
rithm searches the tree to find an efficient 3-anycast transmis-
sion path. Fig. 4 illustrates the search process of EKRSearch.
To facilitate the description, we calculate the weight of edges
in the ER-Tree using formula 6 in advance and display them
in the figure. During a search, EKRSearch selects the subtree
with the lowest energy density and returns it. Based on the
ER-Tree generated using the aforementioned steps, calculate
the energy density of 1-covering trees, 2-covering trees, and
3-covering trees:

1) 1-covering trees: {u1, u2, u4}, the energy density is 3.3;
{u1, u2, u5}, the energy density is 3.4; {u1, u3, u6}, the
energy density is 3.7; {u1, u3, u7}, the energy density
is 5.1.

2) 2-covering trees: {u1, u2, u4, u5}, the energy density is
2.8; {u1, u3, u6, u7}, the energy density is 3.8.

3) 3-covering trees: ∅.
During the first round of selection, the 2-covering tree
{u1, u2, u4, u5} has the lowest energy density. Therefore, the
2-covering tree is removed from the ER-Tree, as shown in Fig.
4(b). Then, the coverage requirement k is updated to 1. In the
second round of selection, the 1-covering tree {u1, u3, u6}
has the lowest energy density. Therefore, the 1-covering tree
is removed from the ER-Tree as shown in Fig. 4(c). Then,
the coverage requirement k is updated to 0. When k = 0,
the search process terminates, and the transmission path for 3-
anycast is {u1 → u2, u2 → u4, u2 → u5, u1 → u3, u3 → u6}.

V. PERFORMANCE EVALUATION

To analyze the performance of EKR, we implement the
existing classical algorithms based on the environment of the
ONE simulator [10].

A. Simulation Setup and Scenarios

In this paper, we present two experimental environments
designed to evaluate the performance of EKR. In the first
scenario, every UAV performs a periodic motion within a fixed
area [27]. In the second scenario, all UAVs move randomly
throughout the entire simulated environment.

k-anycast routing is a method of directing data from a
source node to any k of n destinations. Throughout our
experiments, we vary the value of k. Given that n is a variable
across different simulation environments, we utilize a factor
denoted as k/n. Table II provides a comprehensive overview
of the default simulation settings.

TABLE II
DEFAULT EXPERIMENT PARAMETERS

Parameter First Scenario Second Scenario

Simulation Area 2000m × 2000m 2000 × 2000m
Simulation Time 480s 480s
Mobility Model MapRouteMovement MapRouteMovement
Communication Range 150m 150m
UAV Speed 8m/s 8m/s
Message TTL 200s 200s
Message Size 512bytes 512bytes
Message Creation Rate 4/s 4/s
Number of Destinations 4 8
Number of UAVs 17 30
Factor 0.75 0.75

B. Metrics and Compared Protocols

To evaluate the performance of EKR, we use the following
four metrics.
• Delivery rate: This metric measures the success rate at

which messages travel from the source to the destinations.
A higher delivery rate indicates that more messages are
able to reach their destinations within the allotted TTL
time.

• Average delay: This metric represents the average time
taken for each message to be transmitted from the source
to the destination.

• Overhead ratio: This metric refers to the overhead of the
routing process, and it can be expressed as follows:

We compare EKR with three classical k-anycast routing
schemes:
• Component-based k-anycast (CBK) [24]: CBK is a k-

anycast routing algorithm designed for ad hoc mobile
networks.

• TBM [28]: TBM is a multicast routing protocol based
on UAVs trajectories. However, TBM does not originally
support k-anycast. We have expanded TBM to K-First-
TBM, which communicates with the first k nodes con-
nected.

• Epidemic: Epidemic is a routing protocol designed to
distribute messages to all neighboring nodes without
requiring the maintenance of additional routing tables or
multicast trees.

C. Analysis of Simulation Results

Impact of the Factor. As shown in Fig. 5, the delivery ratio
of all three k-anycast tends to decrease as the factor increases
since copies increase network congestion. As shown in Fig.
6, the average delay increases as the factor increases and
this trend is particularly pronounced in the second scenario.

���� ���� ���� ����
���

���

���

���

��	

���

���
�
�
�
�

�
�
�
�
�
�
	
�
�

������

���	� ���������
��
�������������������	���������

(a) the first scenario

���� ���� ���� ����
���

���

���

���

��	

���

���

�
�
�
�

�
�
�
�
�
�
	
�
�

������

���	� ���������
��
�������������������	���������

(b) the second scenario

Fig. 5. Impact of Factor on Delivery ratio.

���� ���� ���� ����
��

��

��

	�

���

���

���

�
	
�
�
�
�
�
�
�
�
�
�

������

���	� ���������
��
�������������������	���������

(a) the first scenario

���� ���� ���� ����
��

��

��

	�

���

���

���

�
	
�
�
�
�
�
�
�
�
�
�

������

���	� ���������
��
�������������������	���������

(b) the second scenario

Fig. 6. Impact of Factor on Average delay.

As shown in Fig. 7, the network overhead ratio of these
implementations decreases slightly as the factor increases.

As shown in Fig. 5, K-Random-Flood and EKR achieve
the maximal delivery ratio. Furthermore, K-Random-Flood
and EKR show a smaller decrease, while K-First-TBM and
CBK show a more pronounced decrease. EKR incorporates the
trajectory information of unmanned aerial vehicles, ensuring
the reliable forwarding of messages. However, CBK needs to
maintain dynamic groups, which is unreliable.

As shown in Fig. 6, EKR and K-Random-Flood achieve a
better average delay than CBK. Furthermore, when selecting
k nodes, EKR takes into account both time delay and link
reliability. K-Random-Flood, which takes into account the
flooding characteristics, will try all possible paths. However,
CBK lacks an optimal destinations selection mechanism and
just consider hops.

As shown in Fig. 7, the network overhead ratio of these
implementations decreases slightly as the factor increases.
EKR significantly outperforms the other protocols in terms
of overhead ratio.

Impact of the UAV Speed. As illustrated in Fig. 8, the
delivery rate of EKR gradually increases as the speed of
the UAV increases, whereas the delivery rate of K-Random-
Flood remains stable and changes less. This is attributed to
EKR’s utilization of trajectory information. The faster the
node moves, the higher the likelihood of finding an end-to-end
path. EKR can be optimized by exploiting the high mobility
of UAVs. This is also where EKR is superior to traditional
methods. The delivery rate of CBK decreases as the speed
increases. This is because the high mobility of UAVs makes it
difficult to maintain a group of k servers for CBK to forward

���� ���� ��	� ����
���

���

���

���

���

���

���

���

���

���

���

���

���

���

	��

�
	
�
�
�
�
�
�
�
�
�
�
�

������

���	� ���������
��
�������������������	���������

(a) the first scenario

���� ���� ��	� ����
���

���

���

���

���

���

���

���

���

���

���

���

���

���

	��

�
	
�
�
�
�
�
�
�
�
�
�
�

������

���	� ���������
��
�������������������	���������

(b) the second scenario

Fig. 7. Impact of Factor on Overhead rate.

� � 	 �� ��

���

���

���

���

��	

��

���

�
�
�
�

�
�
�
�
�
�
	
�
�

���

���	� ������������
�������������������	���������

(a) the first scenario

� � 	 �� ��
���

���

���

���

��	

��

���

�
�
�
�

�
�
�
�
�
�
	
�
�

���

���	� ������������
�������������������	���������

(b) the second scenario

Fig. 8. Impact of UAV Speed on Delivery ratio.

the message to all destinations.
As shown in Fig. 9, it can be observed that as the speed of

the UAV increases, the average delay decreases significantly.
This is due to the fact that the faster the UAV node moves,
the higher the connectivity between nodes, which leads to a
quicker delivery of messages to their destinations. However,
for CBK, the opposite is true as the speed increases, the
average delay also increases. This is because high mobility
makes it more difficult to maintain a group of k servers,
resulting in a higher delay for message delivery.

As depicted in Fig. 10, the network overhead ratio of K-
Random-Flood, K-First-TBM, and CBK increases as the speed
of the UAVs increases. However, for EKR, the overhead ratio
decreases with an increase in speed.

Impact of the Number of UAVs. As demonstrated in Fig.
11(a), an increase in the number of nodes leads to a rise in
the delivery rate for all four protocols. The higher density of
nodes increases the likelihood of finding end-to-end paths from

� � 	 �� ��
��

��

��

��

��

��

	�

�

���

�
	
�
�
�
�
�
�
�
�
�
�

���

���	� ������������
�������������������	���������

(a) the first scenario

� � 	 �� ��
��

��

��

��

��

��

	�

�

���

���

���

���

���

�
	
�
�
�
�
�
�
�
�
�
�

���

���	� ������������
�������������������	���������

(b) the second scenario

Fig. 9. Impact of UAV Speed on Average delay.

� � � �� ��
�

�

�

�

�

�
�
	
�
�
�
�
�
�
�
�
�
�
�

���

���	� ������������
�������������������	���������

(a) the first scenario

� � 	 �� ��

�

�

�

�

�

�

�

�
	
�
�
�
�
�
�
�
�
�
�
�

���

���	� ������������
�������������������	���������

(b) the second scenario

Fig. 10. Impact of UAV Speed on Overhead rate.

source to destination. Notably, the impact on CBK is more
significant than the others. Meanwhile, EKR and K-Random-
Flood maintain a consistently high delivery rate with stability.

As depicted in Fig. 11(b), an increase in node density results
in a decrease in average delay. This is because in high-density
networks, constructing routes takes less time compared to
sparse networks, thereby reducing delay. Notably, CBK has
the highest average delay among the four protocols, while K-
Random-Flood shows the lowest delay. EKR, on the other
hand, exhibits comparable performance to K-Random-Flood.

Figure 11(c) illustrates that the overhead ratio of these
protocols increases with the number of nodes. EKR exhibits
the lowest ratio and shows no significant trend changes. In
contrast, K-Random-Flood has the highest ratio and demon-
strates a notable increase.

ACKNOWLEDGMENT

This work is supported by the Open Fund of Key Laboratory
of Civil Aviation Smart Airport Theory and System, Civil
Aviation University of China under No. SATS202206, the
National Natural Science Foundation of China under No.
U20B2050, Public Service Platform for Basic Software and
Hardware Supply Chain Guarantee under No. TC210804A,
the ”National Key R&D Program of China” under No.
2021YFB2700500 and 2021YFB2700502, the National Nat-
ural Science Foundation of China under No. 82004499.

CONCLUSIONS

In this paper, we propose an efficient k-anycast routing for
UAV networks, which routes data from the source to any
k destinations within a group with n nodes. To sense the
dynamic topology of the network, existing mechanisms mostly
rely on posteriori methods such as proactive and reactive de-
tection. However, they perform poorly and consume significant
network resources in highly mobile UAV networks. Different
from these methods, we propose a priori-based topology-aware
strategy, which converts the dynamic network topology into
an ER-Tree. Based on ER-Tree, we formalize the k-anycast
problem into a Group Steiner Tree problem and propose an
efficient algorithm to find the transmission path. We performed
simulations with the One simulator. The results demonstrated
that EKR outperforms existing protocols in terms of delivery
rate, end-to-end delay, and network overhead.

REFERENCES

[1] S.-J. Chung, A. A. Paranjape, P. Dames, S. Shen, and
V. Kumar, “A survey on aerial swarm robotics,” IEEE
Transactions on Robotics, vol. 34, no. 4, pp. 837–855,
2018.

[2] R. Goścień, K. Walkowiak, and M. Klinkowski, “Tabu
search algorithm for routing, modulation and spectrum
allocation in elastic optical network with anycast and
unicast traffic,” Computer Networks, vol. 79, pp. 148–
165, 2015.

[3] D. Gao, H. Lin, and X. Liu, “Routing protocol for k-
anycast communication in rechargeable wireless sensor
networks,” Computer Standards & Interfaces, vol. 43,
pp. 12–20, 2016.

[4] X. Wang, “Analysis and design of a k-anycast com-
munication model in ipv6,” Computer Communications,
vol. 31, no. 10, pp. 2071–2077, 2008.

[5] Y. Hu, L. Cheng, Q. Yao, P. P. Lee, W. Wang, and
W. Chen, “Exploiting combined locality for wide-stripe
erasure coding in distributed storage.” in FAST, 2021, pp.
233–248.

[6] S. Pathak and S. Jain, “A survey: on unicast routing
protocols for mobile ad hoc network,” International Jour-
nal ofEmerging Technology and Advanced Engineering,
vol. 3, no. 1, pp. 204–210, 2013.

[7] X. Wang, J. Wang, K. Lu, and Y. Xu, “Gkar: a novel geo-
graphic k-anycast routing for wireless sensor networks,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 5, pp. 916–925, 2012.

[8] Y.-H. Hsu and R.-H. Gau, “Reinforcement learning-based
collision avoidance and optimal trajectory planning in
uav communication networks,” IEEE Transactions on
Mobile Computing, vol. 21, no. 1, pp. 306–320, 2020.

[9] P. Liu, H. He, T. Fu, H. Lu, A. Alelaiwi, and M. W. I.
Wasi, “Task offloading optimization of cruising uav
with fixed trajectory,” Computer Networks, vol. 199, p.
108397, 2021.

[10] A. Keränen, J. Ott, and T. Kärkkäinen, “The one sim-
ulator for dtn protocol evaluation,” in Proceedings of
the 2nd international conference on simulation tools and
techniques, 2009, pp. 1–10.

[11] C. He, S. Liu, and S. Han, “A fuzzy logic reinforcement
learning-based routing algorithm for flying ad hoc net-
works,” in 2020 International Conference on Computing,
Networking and Communications (ICNC). IEEE, 2020,
pp. 987–991.

[12] A. Rovira-Sugranes, F. Afghah, J. Qu, and A. Razi,
“Fully-echoed q-routing with simulated annealing infer-
ence for flying adhoc networks,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 3, pp.
2223–2234, 2021.

[13] A. Thibbotuwawa, P. Nielsen, B. Zbigniew, and G. Bo-
cewicz, “Energy consumption in unmanned aerial ve-
hicles: A review of energy consumption models and
their relation to the uav routing,” in Information Systems

�� �� �� �� ��
����

����

��	�

��	�

��
�

��
�

����
�
�
�
�

�
�
�
�
�
�
	
�
�

	��������	����

���
� ������������
��������������������
�����������

(a) delivery ratio vs. number of nodes

�� �� �� �� ��
��

��

��

��

��

��

	�

�

���

�
	
�
�
�
�
�
�
�
�
�
�

�����	��������

���	� ���������
��
������������������	�����������

(b) average delay vs. number of nodes

�� �� �� �� ��
�

�

�

�

�

�

�

�

	

�
	
�
�
�
�
�
�
�
�
�
�
�

	��������	����

���
� ������������
��������������������
�����������

(c) overhead rate vs. number of nodes

Fig. 11. Impact of Number of Nodes.

Architecture and Technology: Proceedings of 39th Inter-
national Conference on Information Systems Architecture
and Technology–ISAT 2018: Part II. Springer, 2019, pp.
173–184.

[14] O. S. Oubbati, M. Mozaffari, N. Chaib, P. Lorenz,
M. Atiquzzaman, and A. Jamalipour, “Ecad: Energy-
efficient routing in flying ad hoc networks,” International
Journal of Communication Systems, vol. 32, no. 18, p.
e4156, 2019.

[15] S. Bharany, S. Sharma, S. Badotra, O. I. Khalaf,
Y. Alotaibi, S. Alghamdi, and F. Alassery, “Energy-
efficient clustering scheme for flying ad-hoc networks
using an optimized leach protocol,” Energies, vol. 14,
no. 19, p. 6016, 2021.

[16] F. Aadil, A. Raza, M. F. Khan, M. Maqsood,
I. Mehmood, and S. Rho, “Energy aware cluster-based
routing in flying ad-hoc networks,” Sensors, vol. 18,
no. 5, p. 1413, 2018.

[17] H.-O. Lee, J.-S. Nam, and J.-H. Jeon, “Cluster and
location based overlay multicast in mobile ad hoc and
sensor networks,” International Journal of Distributed
Sensor Networks, vol. 10, no. 3, p. 687698, 2014.

[18] H. R. Hussen, S.-C. Choi, J.-H. Park, and J. Kim, “Pre-
dictive geographic multicast routing protocol in flying
ad hoc networks,” International Journal of Distributed
Sensor Networks, vol. 15, no. 7, p. 1550147719843879,
2019.

[19] J. Wang, Y. Zheng, and W. Jia, “An aodv-based anycast
protocol in mobile ad hoc network,” in 14th IEEE Pro-
ceedings on Personal, Indoor and Mobile Radio Com-
munications, 2003. PIMRC 2003., vol. 1. IEEE, 2003,
pp. 221–225.

[20] G. Peng, J. Yang, and C. Gao, “Ardsr: an anycast routing
protocol for mobile ad hoc network,” in Proceedings
of the IEEE 6th Circuits and Systems Symposium on
Emerging Technologies: Frontiers of Mobile and Wireless
Communication (IEEE Cat. No. 04EX710), vol. 2. IEEE,
2004, pp. 505–508.

[21] V. Lenders, M. May, and B. Plattner, “Density-based vs.
proximity-based anycast routing for mobile networks,”

in Proceedings IEEE INFOCOM 2006. 25TH IEEE In-
ternational Conference on Computer Communications.
IEEE, 2006, pp. 1–13.

[22] V. Budyal and S. S. Manvi, “Anfis and agent based
bandwidth and delay aware anycast routing in mobile
ad hoc networks,” Journal of Network and Computer
Applications, vol. 39, pp. 140–151, 2014.

[23] P. I. Basarkod and S. S. Manvi, “Mobility and qos aware
anycast routing in mobile ad hoc networks,” Computers
& Electrical Engineering, vol. 48, pp. 86–99, 2015.

[24] B. Wu and J. Wu, “k-anycast routing schemes for mobile
ad hoc networks,” in Proceedings 20th IEEE Interna-
tional Parallel & Distributed Processing Symposium.
IEEE, 2006, pp. 10–pp.

[25] I. Ljubić, “Solving steiner trees: Recent advances, chal-
lenges, and perspectives,” Networks, vol. 77, no. 2, pp.
177–204, 2021.

[26] C. Chekuri, G. Even, and G. Kortsarz, “A greedy approxi-
mation algorithm for the group steiner problem,” Discrete
Applied Mathematics, vol. 154, no. 1, pp. 15–34, 2006.

[27] M. Asadpour, K. A. Hummel, D. Giustiniano, and
S. Draskovic, “Route or carry: Motion-driven packet
forwarding in micro aerial vehicle networks,” IEEE
Transactions on Mobile Computing, vol. 16, no. 3, pp.
843–856, 2016.

[28] J. Peng, H. Gao, L. Liu, N. Li, and X. Xu, “Tbm:
An efficient trajectory-based multicast routing protocol
for sparse uav networks,” in 2020 IEEE 22nd Interna-
tional Conference on High Performance Computing and
Communications; IEEE 18th International conference on
smart city; IEEE 6th International conference on data
science and systems (HPCC/SmartCity/DSS). IEEE,
2020, pp. 867–872.

