
A Framework for Moving Target Defense based on Federated
Semi-Supervised Learning

Wanying Lu
Wenbin Zhai∗
Feng Wang
Yu Fan

wanyinglu@nuaa.edu.cn
wenbinzhai@nuaa.edu.cn
fengwang06@nuaa.edu.cn
fanyu2017@nuaa.edu.cn

Nanjing University of Aeronautics and Astronautics
Nanjing, Jiangsu Province, China

ABSTRACT
In recent years, with the rapid development of the Internet, it has
penetrated into all areas of daily lives. However, due to the complex-
ity of the Internet architecture, there are inevitably some inherent
security threats, which could be exploited by adversaries to cause
great damage. Moving Target Defense (MTD) has been proposed
to solve this problem by building a dynamic, heterogeneous and
redundant system architecture. Unfortunately, most of the exist-
ing data arbitration algorithms for MTD are based on the major-
ity consensus voting algorithm, which cannot cope with common
mode escape. Therefore, in this paper, we propose a framework
for moving target defense based on Federated Semi-Supervised
Learning (FSSL), called FedDA. In addition to the output data of
heterogeneous executives, FedDA leverages their behavior data to
assist in data arbitration. Meanwhile, we consider a more realistic
assumption that the behavior data of heterogeneous executives
is not annotated with ground-truth lables, and FSSL is used for
model training. Finally, a data arbitration algorithm combined with
historical confidence is proposed to identify malicious executives.
Extensive experimental results show that our method can well re-
sist common mode escape and outperform the state-of-the-art data
arbitration algorithms.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
Moving Target Defense, Data Arbitration, Federated Semi-Supervised
Learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CECCT 2023, November 17–19, 2023, Guilin, China
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1630-0/23/11. . . $15.00
https://doi.org/10.1145/3637494.3638748

ACM Reference Format:
Wanying Lu, Wenbin Zhai, Feng Wang, and Yu Fan. 2023. A Framework for
Moving Target Defense based on Federated Semi-Supervised Learning. In
2023 International Conference on Electronics, Computers and Communication
Technology (CECCT 2023), November 17–19, 2023, Guilin, China. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3637494.3638748

1 INTRODUCTION
The rapid development of the Internet profoundly changes the
social structure and relationship, and greatly promotes the develop-
ment and progress of human society. However, simultaneously with
the massive deployment of the Internet, it also suffers from numer-
ous malicious attacks and damages, in which it will be compromised
and exploited by people with ulterior motives due to software or
hardware loopholes. According to incomplete statistics, in April
2022 alone, there were more than 5.07 million terminals infected
with Trojans or botnet malicious programs in China. Therefore,
effective countermeasures are needed to detect malicious terminals
to enhance the security of the Internet.

There are already some defensive approaches to detect intrusions
on the Internet, however, due to the complexity of the Internet archi-
tecture, there are inevitably some inherent security threats, which
may be due to design flaws or human omissions. In addition, driven
by interests or many other reasons, attacks also develop and evolve
rapidly, which may make existing detection schemes ineffective. In
order to deal with the above severe challenges, Moving Target De-
fense (MTD) [14] is proposed, whose core idea is to build a dynamic,
heterogeneous and redundant system architecture, thereby con-
structing an uncertain, heterogeneous, and non-persistent mimic
environment through the dynamic switching of equivalent func-
tional bodies (e.g., middleware, web server, operating system, etc.)
to detect and destroy the attack chain [6].

Data arbitration [7] is the core of MTD and has an important
impact on the efficiency and security of MTD. There have been
many researches [11] on data arbitration schemes, most of which
are based on the majority consensus voting algorithm. The main
idea is that multiple equivalent functional bodies perform the same
task, and then their respective outputs are compared by the data ar-
biter, based on which the data with the largest number of approvals
is selected as the correct output. It is natural and has been widely

245

https://orcid.org/0000-0003-3229-5889
https://doi.org/10.1145/3637494.3638748
https://doi.org/10.1145/3637494.3638748
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637494.3638748&domain=pdf&date_stamp=2024-02-05

CECCT 2023, November 17–19, 2023, Guilin, China Wanying Lu, et al.

used, but it has the disadvantage that it can not effectively deal with
the problem of “common-mode escape" [12], where there are multi-
ple malicious executives, especially when the malicious executives
are in the majority. For example, there are 𝑁 executives selected
and scheduled, while more than ⌈𝑁 /2⌉ executives are malicious.

To solve the above problem, it is not enough and feasible to
rely solely on the outputs of heterogeneous executives. Fortunately,
various behaviors of heterogeneous executives, such as network
communication, resource consumption, software event, and user
interaction can be exploited to assist the data arbitration [3]. At the
same time, machine learning (ML), especially deep learning (DL),
is very good at learning key features and behavior patterns from
high-dimensional spaces. However, the model training in ML relies
on a large amount of labeled data [2], which is unrealistic in MTD,
because the data of heterogeneous executives is often not anno-
tated with ground-truth labels. In addition, since the heterogeneous
executives contain private data of different users, the raw data can
not be transmitted to the data arbiter for model training due to the
consideration of privacy preservation [9].

Therefore, in this paper, we propose a framework for Moving Tar-
get Defense based on Federated Semi-Supervised Learning (FSSL)
[5], called FedDA. First, we utilized the FSSL for model training
based on the status and behavior data of equivalent functional
bodies (e.g., network traffic). Then, based on the trained model, a
data arbitration algorithm combined with historical confidence is
proposed to identify malicious executives in response to common
mode escape.

In particular, the main contributions of this paper are summa-
rized as follows:

• A framework for moving target defense based on Federated
Semi-Supervised Learning (FSSL) called FedDA is proposed.
First, we consider a more realistic assumption that the be-
havior data of heterogeneous executives is all unlabeled,
based on which the FSSL is adopted for model training. Then
the behavior data of each heterogeneous executive is uti-
lized along with their output data for data arbitration, and
a data arbitration algorithm combined with the historical
confidence is designed to address the common mode escape.

• Extensive experiments are conducted based on the CIC-IDS
2017 dataset [10] through the Keras library and TensorFlow
framework. The results show that FedDA can well resist
common mode escape and outperform the state-of-the-art
data arbitration algorithm [11].

2 RELATEDWORK
2.1 Data Arbitration
Data arbitration algorithms are a key part of theMTD system, which
can be utilized to distinguish normal and correct data. Most of the
existing methods are based on the traditional majority consensus
voting algorithm. Shen et al. [11] propose a reliable multi-rule data
arbitration method with adaptive thresholds for random and covert
data injection attacks. By cutting off future communication with
malicious neighbors, data injection attacks can be effectively de-
fended. Wei et al. [4] design a confidence calculation method based
on Logistic function. Based on the classification of the impact of

different historical periods, it can effectively remove various abnor-
mal noises, thereby improving the security of the data arbitration
mechanism. Aiming at the virtual machine escape scenario in the
honeypot system, Lu [8] propose a dual mimic mechanism and
a honeypot architecture under this mechanism, which can resist
the escape vulnerability of the virtualization platform through the
heterogeneity of the underlying virtualization platform.

2.2 Federated Semi-Supervised Learning
FSSL is a distributed learning model that uses unlabeled data of
multiple clients and limited labeled data of the server for model
training without revealing the original private data, in which a
small amount of labeled data is helpful for training guidance, while
massive unlabeled data is beneficial to fully learn the diverse knowl-
edge of the data and prevent the model from overfitting. Zhao et al.
[13] use unlabeled data and Long Short-Term Memory model for
automatic encoding on the client side, and use Softmax classifier
at the server for learning, thus achieving higher accuracy and bet-
ter performance than FSSL based on data augmentation. Jeong et
al. [5] propose a method based on the consistency verification of
predictions between clients to improve the performance of FSSL,
and design two experimental scenarios for evaluation based on
the location of the labeled data (i.e., labels at server and labels at
clients).

3 SYSTEM MODEL
The MTD system presented in this paper consists of users, middle-
wares, the scheduler, monitor, and data arbiter. The system archi-
tecture is depicted in Fig. 1. Users consist of two communication
parties. For ease of presentation, we assume that user A is the data
sender and user B is the data receiver. The middleware may be
compromised by adversaries to perform attacks on data, such as
tampering, or dropping. Therefore, to verify the correctness of the
data, data is transmitted through heterogeneous and redundant
middlewares. In other words, the data sender A selects a certain
number of middlewares from the middleware resource pool through
the scheduler.

Multiple heterogeneous middlewares selected by the scheduler
perform the same task, e.g. transmit the same data from user A,
and then their respective output data will be transmitted to user
B. At the same time, the monitor collects the status and various
behaviors of each middleware, such as network communication,
resource consumption, software event, and user interaction, and
then these monitored data will be transmitted to the data arbiter for
further analysis and detection. After receiving the output data from
each middleware, the data arbiter is responsible for discriminating
the correct data and identifying malicious middlewares.

4 METHOD
4.1 Basic Idea
The basic idea is to use the behavior and status data of each middle-
ware along with the output data for the data arbitration in order
to deal with the common mode escape. Specifically, the behavior
and status data 𝐵𝐷𝑖 of each middleware 𝑀𝑖 is combined with its
output data 𝑂𝐷𝑖 to perform data arbitration. First, the behavior
and status data of all users on different middlewares are exploited

246

A Framework for Moving Target Defense based on Federated Semi-Supervised Learning CECCT 2023, November 17–19, 2023, Guilin, China

to train the detection model in the form of FSSL, due to privacy
concerns and limitations of real-world scenarios. Then, based on
the trained detection model, the behavior and status 𝐵𝐷𝑖 of each
middleware 𝑀𝑖 in this data transmission can be judged, and the
trust value 𝑃𝑖 of each middleware, that is, the probability that its
behavior belongs to normal can be obtained. Next, data arbitration
is implemented based on the output 𝑂𝐷𝑖 of each middleware, how-
ever, unlike the traditional majority consensus voting algorithm,
the weight𝑊𝑖 of each middleware is no longer fixed at 1. Instead, a
data arbitration algorithm combined with the historical confidence
is proposed, in which the weight𝑊𝑖 of each middleware𝑀𝑖 consists
of the multiplication of two parts, one is the historical confidence
of the middleware 𝐻𝑖 , which is determined by its behavior in the
past period (i.e., a window size𝑇), and the other is the trust value of
the middleware 𝑃𝑖 , which can be obtained by the detection model.
Finally, we weighted average the weights of all middlewares based
on the output data instead of accumulation to get the approval
scores of different output data. The output data with the highest
approval score is considered as normal and wins the arbitration.

Figure 1: The architecture of the MTD system.

We further illustrate our method with the example shown in Fig.
2. There are five middlewares𝑀1 ∼ 𝑀5. At the first round, based on
the detection model and the behavior data 𝐵𝐷 of each middleware,
the data arbiter gets the trust value of each middleware, namely:
𝑃1 = 0.21, 𝑃2 = 0.96, 𝑃3 = 0.90, 𝑃4 = 0.86, 𝑃5 = 0.92. Meanwhile,
the initial historical confidence of each middleware is 1, namely
𝐻𝑖 = 1, 1 ≤ 𝑖 ≤ 5. Therefore, the weight of each middleware is
𝑊1 = 𝑃1∗𝐻1 = 0.21,𝑊2 = 𝑃2∗𝐻2 = 0.96,𝑊3 = 0.90,𝑊4 = 0.86,𝑊5 =

0.92. Then, we average the weights of middlewares based on the
difference of the output data to obtain the approval score of each
output data, namely the approval score 𝑆1 of the output data 𝐷1 is
𝑆1 = (𝑊2 +𝑊3 +𝑊4 +𝑊5) / 4 = 0.91, and 𝑆2 =𝑊1 / 1 = 0.21. Since
𝑆1 > 𝑆2, the output data 𝐷1 is arbitrated as normal data and wins
the data arbitration. Furthermore, the historical confidence 𝐻1 of
the middleware𝑀1 need to be correspondingly reduced due to the
wrong output data. For convenience, we set the window size to 5,
namely 𝑇 = 5. Therefore, 𝐻1 is reduced to 4/5 = 0.8.

What’s more, we next explain how our method further efficiently
deals with common mode escape. At the forth round 𝑟4, the output
data 𝑂𝐷1 ∼ 𝑂𝐷4 of the middlewares 𝑀1 ∼ 𝑀4 are all 𝐷2. The
malicious data 𝐷2 will win the data arbitration if the traditional
majority consensus algorithm is adopted, i.e. it is not effective
against common mode escape. However, according to our method,
the weight of each middleware is𝑊1 = 0.15 ∗ 0.4 = 0.06,𝑊2 =

0.12 ∗ 0.6 = 0.072,𝑊3 = 0.45 ∗ 0.8 = 0.36,𝑊4 = 0.27 ∗ 1 = 0.27,𝑊5 =

0.93 ∗ 1 = 0.93. Therefore, the approval score of each data is 𝑆1 =

Figure 2: The illustrative example of FedDA.

0.93, 𝑆2 = (𝑊1 +𝑊2 +𝑊3 +𝑊4) / 4 = 0.1905. Since 𝑆1 > 𝑆2, the
output data 𝐷1 will win the data arbitration. Therefore, it is clear
that our data arbitration algorithm can efficiently solve the problem
of common mode escape.

4.2 Model Training based on FSSL
Most existing data arbitration methods are based on the majority
consensus voting algorithm, that is, the output data of each mid-
dleware is compared, and then the data with the most approvals
is selected as the correct output. This scheme is easy to fail in the
scenario of common mode escape, as depicted at the round 𝑟2 and
𝑟3 in Fig. 2.

In order to address the above challenges, in addition to the out-
put data of middlewares, the status and various behaviors of each
middleware are collected for further analysis. However, how to
make full use of the limited labeled data on the data arbiter side
and the massive unlabeled data on the middleware side for model
training and performance optimization is a significant challenge.
Motivated by this, in this paper, we design a model training method
based on FSSL, which consists of a server and multiple clients. In
our MTD system, the data arbiter is the server and has a certain
amount of labeled data, while each middleware acts as a client with
a large amount of unlabeled data, as shown in Fig. 3. The server and
clients implement local training based on their own private data,
and cooperate to train a global model under the coordination and
command of the server in order to profit from data of peer entities
without sharing local raw data. The details and procedures of the
model training are described as follows.

4.2.1 Model Initialization. At the beginning of each training round
𝑟 , the server 𝑆 distributes the global model parameters to each client
𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , as shown in Step 1 in Fig. 3. At the first round 𝑟0,
the global model parameter 𝜔0

𝑔 is specified or initialized randomly,
otherwise it 𝜔𝑟

𝑔 is aggregated from the local model parameters of
clients 𝜔𝑟

𝑖
.

4.2.2 Model Training. In Step 2, model training consists of two
parts, namely supervised learning based on labeled data on the

247

CECCT 2023, November 17–19, 2023, Guilin, China Wanying Lu, et al.

Figure 3: The overview of federated semi-supervised learning
procedure.

server side and unsupervised training based on unlabeled data on
the client side.

Unsupervised training at clients: The data of the client is un-
labeled, and we utilize the pseudo-label technique [1] for unsu-
pervised training of the client. The training objective for each
client 𝑀𝑖 is to minimize the following loss function 𝐹𝑖 (𝜔𝑟

𝑖
) =

1
|𝐷𝑖 |

∑ |𝐷𝑖 |
𝑗=1 sgn(max(𝑦) ≥ 𝛼) 𝑙 (arg max(𝑦), 𝑦), where𝜔𝑟

𝑖
is themodel

parameters of the client 𝑀𝑖 at round 𝑟 ; 𝐷𝑖 is the local private un-
labeled training samples 𝐷𝑖 = {(𝑥 𝑗) | 1 ≤ 𝑗 ≤ |𝐷𝑖 |} in which 𝑥𝑖 is
the feature vector; sgn() is the indicator function, 𝑦 = 𝑝 (𝜔𝑟

𝑖
, 𝑥 𝑗),

which means the prediction of the current model parameter 𝜔𝑟
𝑖
on

the sample 𝑥 𝑗 ; 𝛼 is the threshold hyperparameter, which is used
to determine which samples with high confidence can be attached
with pseudo-labels, and 𝑙 () is the cross-entropy loss function. Each
client performs 𝐸 epochs of local training and stochastic gradient
descent (SGD) or Adam are used to find the optimal solution. The
model parameter 𝜔𝑟

𝑖
is updated by 𝜔𝑟+1

𝑖
= 𝜔𝑟

𝑖
−𝜂∇𝐹𝑖 (𝜔𝑟

𝑖
), where 𝜂

is the learning rate and ∇𝐹𝑖 (𝜔𝑟
𝑖
) is the gradient of the loss function

with respect to 𝜔𝑟
𝑖
. After completing the local training, each client

uploads the updated parameters 𝜔𝑟+1
𝑖

to the server, as present in
Step 3.

Supervised learning at the server: In this paper, unsupervised
training on the client side is carried out concurrently with super-
vised learning on the server side. In other words, after the server
distributes the global model parameter 𝜔𝑟

𝑔 to clients, it uses the
parameter for supervised learning based on its local labeled data
samples𝐷𝑠 = {(𝑥 𝑗 , 𝑦 𝑗) | 1 ≤ 𝑗 ≤ |𝐷𝑠 |} in parallel. The loss function
can be represented as 𝐹𝑠 (𝜔𝑟

𝑠) = 1
|𝐷𝑠 |

∑ |𝐷𝑠 |
𝑗=1 𝑙 (𝑦 𝑗 , 𝑝 (𝜔𝑟

𝑠 , 𝑥 𝑗)), where
𝜔𝑟
𝑠 is the model parameter of the server 𝑆 at round 𝑟 .

4.2.3 Model Update. After receiving the local model parameters
uploaded by all clients, the server performs global aggregation in
Step 4 to obtain new global model parameter for the next round of
training. FedAvg [9] is a mainstream federated learning aggrega-
tion function and has been proven to be convergent. In this paper,
since we consider a novel FSSL scenario, a new aggregation func-
tion is proposed on this basis of FedAvg: 𝜔𝑟+1

𝑔 =
|𝐷𝑠 |

|𝐷𝑐 |+|𝐷𝑠 |𝜔
𝑟+1
𝑠 +∑𝑁

𝑖=1
|𝐷𝑖 |

|𝐷𝑐 |+|𝐷𝑠 |𝜔
𝑟𝑖+1
𝑖

, where |𝐷𝑐 | =
∑𝑁
𝑖=1 |𝐷𝑖 |. It retains theweighted

average idea of FedAvg, while taking the supervised learning at the
server into consideration.

Repeat the above steps until the global model converges or a
certain specified number of training rounds 𝑅 reaches.

4.3 Data Arbitration
In the previous section, we obtain the detection model based on
the FSSL, and then in this section, we use the trained model for
data arbitration. Therefore, a data arbitration algorithm combined
with the historical conference is proposed. Each middleware 𝑀𝑖

is associated with a historical confidence 𝐻𝑖 based on its behavior
over a period of time in the past (i.e., a recent window𝑊). Initially,
the confidence 𝐻𝑖 of each middleware is 1, indicating that our
initial trust in the middlewares, because generally speaking, the
middleware will not be maliciously invaded when the system is
just running. Then, when the data is transmitted through multiple
middlewares, the monitor transmits the behavior and status data
𝐵𝐷𝑖 of each middleware to the data arbiter for detection, and the
trust value of each middleware 𝑃𝑖 can be obtained. This trust value
𝑃𝑖 of each middleware will be multiplied by its historical confidence
𝐻𝑖 as the weight 𝑊𝑖 of this middleware in the data arbitration.
Next, the weight of middlewares with the same output data 𝐷 𝑗 are
weighted averaged, and then it is used as the approval score 𝑆 𝑗 for
this output data. Finally, the data with the highest approval score is
considered as normal data, and the behavior of the corresponding
middlewares are normal while others are malicious. At the same
time, we update the historical confidence of eachmiddleware, that is,
the proportion of normal behavior in the recent𝑊 data arbitrations.

5 EXPERIMENTAL RESULTS
5.1 Evaluation Setup
In this paper, we use CIC-IDS 2017 [10] dataset. Since the distri-
bution of different types of samples is extremely unbalanced, we
clean and process the dataset, and select 8 attack types, and about
285,000 data from the dataset for experiments. The labeled data
at the server accounts for about 10% of the total training samples,
and the ratio of training data and test-validation data is 8:2. The
MTD system for experiments consists of one data arbiter (i.e., the
server) and 5 heterogeneous middlewares (i.e., 5 clients), each of
which deploys a Convolutional Neural Network (CNN) model for
anomaly detection and data arbitration. Furthermore, in order to
evaluate the performance under different data distributions, we
design two experimental scenarios, namely the basic and balanced
scenarios. The base scenario represents a real MTD system, where
somemiddlewares may perform normal operations while the others
may be under various attacks. In the balanced scenario, the data
of each middleware is independent and identically distributed, and
only the data size of different middlewares varies. Furthermore, to
evaluate the detection accuracy of our scheme for common-mode
escape, the number of malicious middlewares varies from 1 to 4 at
different time periods.

To evaluate the performance of our method more concretely, we
first explore the performance of FSSL through the following five
metrics: Accuracy, Precision, Recall, F1-Score, and FPR. We then
further explore the accuracy of data arbitration, using the Data
Arbitration Accuracy (DAA) = the number of correctly arbitrated
data / the total number of arbitrated data.

248

A Framework for Moving Target Defense based on Federated Semi-Supervised Learning CECCT 2023, November 17–19, 2023, Guilin, China

5.2 System Performance
5.2.1 The influence of the data size at the server. As shown in Table
1, with the increase of labeled data at the server, the performance of
FedDA improves gradually, this is because the increase of labeled
data on the server side can better guide the unsupervised training
on the client side. Meanwhile, when the proportion of labeled data
is only 1%, even in basic scenarios, FedDA can still achieve 75%
detection accuracy, and when the percentage of labeled data is
boosted to 12.5%, FedDA can achieve higher than 97% accuracy
in both scenarios. At the same time, we also conduct local semi-
supervised learning experiments. The experimental results show
that the performance of FedDA is close to that of the local semi-
supervised learning.

Table 1: Results Summary ofDifferentData Sizes of the Server

Accuracy Precision Recall/TPR F1-Score FPR

Basic

1.75% 0.7487 0.7881 0.5090 0.6063 0.0631
3.5% 0.7849 0.8090 0.6354 0.7058 0.0175
6.5% 0.8016 0.8163 0.5356 0.6314 0.0493
10% 0.9225 0.9225 0.7423 0.8074 0.0250
12.5% 0.9707 0.9707 0.8548 0.9027 0.0051

Balanced

1.75% 0.8225 0.8350 0.5938 0.6734 0.0553
3.5% 0.8363 0.8496 0.6147 0.6921 0.0478
6.5% 0.9543 0.9543 0.8095 0.8654 0.0109
10% 0.9711 0.9711 0.8827 0.9143 0.0132
12.5% 0.9752 0.9752 0.8904 0.9219 0.0106

LocalSSL

1.75% 0.8521 0.8521 0.6183 0.6979 0.0499
3.5% 0.8775 0.8775 0.6654 0.7381 0.0412
6.5% 0.9663 0.9663 0.8468 0.8941 0.0086
10% 0.9833 0.9833 0.9103 0.9409 0.0041
12.5% 0.9839 0.9839 0.9163 0.9439 0.0050

5.2.2 The impact of the number of malicious middlewares. In this
section, the data arbitration algorithm in [11] is used as a compar-
ison algorithm, and the results are summarized in Table 2. First,
when the number of malicious middleware is in the minority (that
is, the number is 1 or 2), both methods can achieve almost perfect
data arbitration accuracy. However, when the number of malicious
middleware accounts for the majority, the accuracy of the com-
parison algorithm drops off a cliff. When the number of malicious
middleware is 4, its accuracy rate becomes only 3%! In contrast,
FedDA still maintains a higher than 90% accuracy. The reason is
that the comparison algorithm only uses the output data of each
middleware, and it is based on the traditional majority consensus
voting algorithm, while FedDA combines the behavior data of each
middleware to make arbitration. In addition, the weight of each
middleware is averaged based on the output data to get the approval
score of each output data, instead of accumulating, which can well
resist the adverse impact of common mode escape.

6 CONCLUSION
Due to the complexity of the Internet architecture, there are in-
evitably security threats, and Moving Target Defense is proposed
to solve the above problem. However, we find that most existing
studies are mainly based on the majority consensus voting algo-
rithm, which can not cope with the problem of common mode

Table 2: Data Arbitration Accuracy of Different Number of
Malicious Middlewares

1 2 3 4 Mixed

FedDA Basic 1.0000 0.9990 0.9950 0.9425 0.9923
Balanced 1.0000 0.9785 0.9308 0.8263 0.8848

Shen et al. [11] - 1.0000 1.0000 0.1330 0.0318 0.1980

escape, namely there are multiple malicious executives, especially
when the malicious executives are in the majority. Therefore, in
this paper, we propose a framework for Moving Target Defense
based on Federated Semi-Supervised Learning (FSSL), called FedDA.
First, we consider a more realistic assumption that the behavior
data of heterogeneous executives is all unlabeled, based on which
the FSSL is adopted for model training. Then the behavior data of
each heterogeneous executive is utilized along with their output
data for data arbitration, and a data arbitration algorithm combined
with the historical confidence is designed to address the common
mode escape. Through Extensive experiments, we demonstrate that
FedDA can well resist common mode escape and outperform the
state-of-the-art data arbitration algorithms.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China under No. U20B2050 and 82004499, and Public Service
Platform for Basic Software and Hardware Supply Chain Guarantee
under No. TC210804A.

REFERENCES
[1] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness.

2020. Pseudo-labeling and confirmation bias in deep semi-supervised learning.
In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[2] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and
Luca Benini. 2019. Anomaly detection using autoencoders in high performance
computing systems. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 9428–9433.

[3] Enrique Mármol Campos, Pablo Fernández Saura, Aurora González-Vidal, José L
Hernández-Ramos, Jorge Bernal Bernabe, Gianmarco Baldini, and Antonio
Skarmeta. 2021. Evaluating Federated Learning for intrusion detection in Internet
of Things: Review and challenges. Computer Networks (2021), 108661.

[4] Wei GUO, Fan ZHANG, Zhaoqi WU, Jin WEI, Jiangxing WU, and Wenle ZHOU.
2020. Confidence Skewing Problem and Its Correction Method in Mimic Arbitra-
tion Mechanism. Chinese Journal of Electronics 29, 3 (2020), 547–553.

[5] Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. 2021. Federated
Semi-Supervised Learning with Inter-Client Consistency & Disjoint Learning. In
International Conference on Learning Representations (ICLR) 2021. International
Conference on Learning Representations (ICLR).

[6] Hai Jin, Zhi Li, Deqing Zou, and Bin Yuan. 2019. Dseom: A framework for
dynamic security evaluation and optimization of mtd in container-based cloud.
IEEE Transactions on Dependable and Secure Computing 18, 3 (2019), 1125–1136.

[7] W Li, Z Zhang, L Wang, and J Wu. 2018. The modeling and risk assessment on
redundancy adjudication of mimic defense. Journal of Cyber Security 3, 5 (2018),
64–74.

[8] Xiangyu Lu, Peng Yi, Youjun Bu, and Bo Chen. 2022. Mimic honeypot based on
dual mimicry mechanism. In Third International Conference on Electronics and
Communication; Network and Computer Technology (ECNCT 2021), Vol. 12167.
SPIE, 83–89.

[9] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[10] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Toward
generating a new intrusion detection dataset and intrusion traffic characterization.
ICISSp 1 (2018), 108–116.

249

CECCT 2023, November 17–19, 2023, Guilin, China Wanying Lu, et al.

[11] Congqi Shen, Shuang-Xi Chen, and Chun-MingWu. 2019. A Decentralized Multi-
ruling Arbiter for Cyberspace Mimicry Defense. In 2019 International Symposium
on Networks, Computers and Communications (ISNCC). IEEE, 1–6.

[12] JiangXing Wu. 2022. Problems and solutions regarding generalized functional
safety in cyberspace. Security and Safety 1 (2022), 2022001.

[13] Yuchen Zhao, Hanyang Liu, Honglin Li, Payam Barnaghi, and Hamed Haddadi.
2020. Semi-supervised federated learning for activity recognition. arXiv preprint
arXiv:2011.00851 (2020).

[14] Jianjun Zheng and Akbar Siami Namin. 2019. A survey on the moving target
defense strategies: An architectural perspective. Journal of Computer Science and
Technology 34, 1 (2019), 207–233.

250

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Arbitration
	2.2 Federated Semi-Supervised Learning

	3 System Model
	4 Method
	4.1 Basic Idea
	4.2 Model Training based on FSSL
	4.3 Data Arbitration

	5 Experimental Results
	5.1 Evaluation Setup
	5.2 System Performance

	6 Conclusion
	Acknowledgments
	References

