
HBC: Combining Lossy and Lossless Hybrid
Bilayer Compression Framework on Time-Series

Data
Wanying Lu∗, Liang Liu∗, Wenbin Zhai∗, Haoyuan Chen∗, Yulei Liu∗

∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
Nanjing, China

Emails: {wanyinglu, liangliu, wenbinzhai, giannischen, liu yulei}@nuaa.edu.cn

Abstract—The popularization and application of the Internet
of Things (IoT) technology has brought massive time series data,
which puts forward higher requirements for data compression
technology. At present, most existing compression methods use
only a single lossy or lossless compression algorithm to perform
data compression. Furthermore, traditional lossy compression
methods usually adopt a fixed error threshold. However, in
practical applications, users have different accuracy requirements
for time series data in different numerical ranges. In this paper,
we design a Hybrid Bilayer Compression (HBC) framework,
which consists of a data accuracy-aware lossy compression layer
and a data feature-aware lossless compression layer. First, the
original time series data is lossy compressed on the top layer
of HBC, where the error threshold can be adaptively adjusted
according to the user’s accuracy requirements. Then, based on
the features of lossy-compressed data, we use supervised learning
to select the optimal lossless compression algorithm from the
algorithm pool to further compress the data. Experimental results
show that compared with three state-of-the-art compression
algorithms, HBC reduces the storage space by 52.1%, 91.66%,
and 92.27%, respectively.

Index Terms—Lossy compression, lossless compression, time
series data, accuracy-aware, feature-aware

I. INTRODUCTION

In recent years, the application and popularization of Mobile
Internet, Internet of Things (IoT), 5G and other technologies
have caused a data blowout explosion, among which time
series data is an important part of big data. In order to meet
people’s needs in the storage and processing of time series
data, database systems with time series characteristics such
as OpenTSDB, KairosDB, and InfluxDB have emerged [1].
There is a very important module in these systems, that is, the
data compression module, which saves a lot of storage space
for the system, improves the I/O performance and reduces the
cost of data transmission. Therefore, it is a meaningful work to
study the data compression technology of time series database.

At present, researchers have proposed many novel compres-
sion strategies to make data close to the Shannon entropy limit
[2]. According to whether the compressed data can be com-
pletely restored to the original data, we can divide the existing
data compression algorithms into two categories: lossless
compression and lossy compression. The average compression

ratio of the current lossless compression algorithm can reach
2 to 4 times [3], [4], which ensures high accuracy of data and
provides limited data compression. On the contrary, the lossy
compression algorithm provides a significant compression gain
at the expense of data accuracy, and the compression ratio
can reach up to 16 times [5], [6], making it favored on some
datasets that can tolerate certain errors.

However, most of the existing compression methods only
use a single lossless or lossy compression algorithm to com-
press data [7], [8]. Moreover, lossy compression algorithms
often use the minimum error threshold to ensure the accuracy
of some data, and this error is unique and immutable. This
indiscriminate implementation of a uniform compression error
strategy for all data makes users lose the opportunity to obtain
a higher compression ratio.

In real life, the frequency of data collection is very high,
which leads to the acquisition of data with a small change in
a short period. For some non-precision industries, the value
improvement brought by a large amount of redundant data to
users is not high, but it puts too much burden on data storage.
Therefore, it is necessary to use a lossy compression method
to eliminate some data with small changes within the error
range. Moreover, in some application scenarios, such as power
monitoring, social networking sites, environmental assessment,
etc., users pay different attention to the numerical value of
different data ranges. They only require very high accuracy for
some of the data they are interested, and can tolerate different
degrees of error for the other unimportant data. Therefore, only
a single lossless or lossy compression with a fixed error value
cannot optimise the data compression ratio.

In this paper, we design a Hybrid Bilayer Compression
(HBC) framework combining lossy and lossless compression,
which fully utilizes the different accuracy requirements of
users for data in different numerical ranges. This framework
achieves a high compression ratio under the premise of sat-
isfying the user’s data accuracy requirements. For instance,
there is a time series data D = {(T1, V1), (T2, V2), (T3, V3),
(T4, V4)......(Ti−2, Vi−2), (Ti−1, Vi−1), (Ti, Vi)}, where Ti

represents the timestamp and Vi represents the value. At first,
it will enter the top layer of HBC. This layer is a data accuracy-

aware lossy compression layer, which will dynamically adjust
the compression error based on the error upper and lower
bounds (δmin j , δmax j)(δ ≥ 0) set by the user for different
numerical ranges of data. This is a process of data point
screening, in which the data points within the error range
are eliminated, and the remaining data points are retained
as representative point of D. The top layer of HBC will
lossy compress D into D′ = {(T1, V1), (T4, V4) · · · (Ti−2,
Vi−2),(Ti, Vi)}. Then, the lossy compressed data D′ will be
transmitted to the bottom layer of HBC, which is a data
feature-aware lossless compression layer. This layer will first
partition D′ into multiple windows. And then it will select the
optimal lossless compression algorithm according to the data
characteristics of each window to compress the storage space
as much as possible.

In the design and implementation of HBC, we face the
following two key challenges:

Challenge 1: How to design a lossy compression algorithm
that adaptively adjusts the error threshold? The error thresholds
of traditional lossy compression algorithms are pre-defined
and fixed, such as Box Car and Backward Slope [9], which
cannot meet the different accuracy requirements of users for
data in different numerical ranges. Another type of lossy
compression method based on model prediction can achieve
a certain degree of adaptability in error threshold adjustment,
but the training of the prediction model consumes a lot of
time, which is not suitable for massive and diverse time series
data scenarios. In order to solve this problem, we propose a
new lightweight approach called Variable Error Segmented
Compression Algorithm (VE-SCA) at the lossy compression
layer of HBC, which can adaptively select an appropriate error
threshold based on the user’s accuracy requirements for data
in different numerical ranges.

Challenge 2: How to perform efficient lossless compression
on lossy compressed data? In order to further reduce the stor-
age space of the data, we add a lossless compression layer on
the basis of the lossy compression layer. However, time series
data only retains some representative data points after lossy
compression, thus losing its original locality characteristics
(i.e., local data does not change much). Therefore, existing
compression methods based on local data invariance, such as
Delta, Delta of Delta, and XOR, may no longer be able to pro-
vide optimal compression effects. In addition, time series data
in the real world is diverse, that is, different data has different
features, including type, numerical value, and fluctuation. It is
difficult for the existing single lossless compression algorithm
to achieve a high compression ratio. In order to solve the
above two problems, we train an Efficient Adaptive Offline
Selector (EAOS) at the lossless compression layer through
supervised learning. By extracting the characteristics of the
data, it can quickly select the compression algorithm with the
highest compression efficiency for the input time series data
from the compression method pool.

In summary, the main contributions we make are as follows:
• We design the HBC framework that combines lossy

compression and lossless compression. It achieves a

high compression ratio under the premise of meeting
the accuracy requirements of users for data in different
numerical ranges. And it also balances the two indicators
of compression ratio and compression accuracy very well.

• A novel lightweight compression algorithm called VE-
SCA is proposed at the data accuracy-aware lossy com-
pression layer, which can adaptively select the corre-
sponding error threshold according to the user’s accuracy
requirements.

• We design an EAOS based on supervised learning at
the data feature-aware lossless compression layer, which
recognizes the data feature and then selects the optimal
compression algorithm from the method pool.

• We compare HBC proposed in this paper with the state-
of-the-art compression algorithms. The results show that
HBC saves storage space by an average of 91.66% and
92.27% compared to the lossless compression method
AMMMO [10] and Chimp128 [7]. And compared with
the lossy compression method LFZip [11], HBC reduces
the storage space by 52.1% on average.

The rest of the paper is organized as follows: We first
review the existing lossy and lossless compression algorithms
in Section II. Then, we introduce the overall architecture of
HBC in Section III. In Sections IV and V, we detail VE-
SCA proposed at the data accuracy-aware layer and EAOS at
the data feature-aware layer, respectively. In Section VI, we
evaluate the compression strategy of HBC through extensive
experiments. Finally, we conclude this paper.

II. RELATED WORKS

Data compression is the process of representing information
with fewer data bits according to a specific coding scheme.
In this section, we will focus on the development of lossless
compression and lossy compression technologies in recent
years.

A. Lossless compression

Lossless compression can completely restore the original
data without causing any distortion, but the compression ratio
is limited. This type is generally widely used in fields that
require high data accuracy. According to whether the algorithm
can cope with the diversity of time series data, we can divide
lossless compression into non-adaptive lossless compression
and adaptive lossless compression.

Regarding non-adaptive lossless compression, many re-
searchers have proposed very famous compression methods,
such as Huffman coding [12], RLE [13], Delta [14], LZW
[15], and so on. Based on these traditional data compression
methods, researchers have made some improvements and
explorations. To improve the query efficiency, the Gorilla [16]
database actively adopts an efficient lossless algorithm, which
performs delta of delta operation on the timestamp and XOR
operation on the value. However, this compression method
only performs a single floating-point number compression,
and the post-coding of the XOR operation does not fully
consider the characteristics of the actual time series data.

Both Chimp [7] and TSXOR [17] further improved the XOR
compression method by adding compressible common bits,
but these methods will make the compression time too long.
PBE [18] utilizes dynamic programming to achieve an optimal
compression scheme for monotonically increasing time series
data, but it cannot handle general time series data with
fluctuations.

In recent years, due to the variability of time series data,
more researchers have focused on more efficient adaptive loss-
less compression. And they introduce machine learning (ML)
and dynamic compression strategies into data compression.
Both FPC [19] and Sprintz [20] use ML to compress the
difference after prediction of time series data to achieve a high
compression ratio. But the training model obtained by this
method cannot adapt to multiple datasets. The AMMMO [10]
framework is a two-stage compression scheme to select the
model. It first identifies the characteristics of the data and then
chooses the best one among a small number of compression
modes. This method fully considers the diversity of time series
data features, but determining the parameter values in the
first stage will consume a lot of time. The DeepZip [21]
compressor combines a recurrent neural network predictor
with an arithmetic coder to achieve a high compression ratio
by predicting and encoding the probability of occurrence of
each character. However, this compressor does not perform
well on non-stationary data.

B. Lossy compression

Lossy compression takes advantage of the fact that people
are not sensitive to some data in the acquired information,
allowing a small part of the information to be lost during the
compression process in exchange for a high compression ratio.
According to whether the error can be flexibly adjusted, we
divide lossy compression into non-adaptive lossy compression
and adaptive lossy compression.

The earliest research on lossy compression originated from
non-adaptive lossy compression. Box Car [9] is an elemen-
tary lossy compression method that only selects one data
point to store within the error range. However, this method
cannot reflect the trend change of the data. Swinging Door
Trending [8] and Critical Aperture [22] are two lightweight
and fast compression algorithms. They use multi-segment
linear functions to approximate the original time series data
according to the maximum error constraint. However, in the
time series data with more abnormal data, the performance
of these two compression algorithms will be greatly reduced.
For multivariate floating-point time-series data, S. Chandak et
al. [11] designed an error-bounded lossy compressor based on
the predictive quantization entropy encoder framework, named
LFZip, which utilizes linear and neural network predictive
models to achieve high compression ratio improvements.

The non-adaptive lossy compression mentioned above can
only ensure that the data is compressed under the unique error
value constrained by the user. And they can only exhibit a high
compression ratio in datasets where the data changes smoothly.
In order to solve these problems, a small number of researchers

have explored adaptive lossy compression. An online, adaptive
multi-model compression algorithm is proposed in the Mod-
elarDB [23] database. The algorithm supports both lossless
compression and lossy compression within a user-defined error
range, but this approach only performs well with regular
time series and lossy patterns. In [24], based on the derived
multidimensional prediction model, it proposes a new error-
controlled lossy compression algorithm. In order to deal with
irregular data with sharp peak changes, it designs an Adaptive
Error Controlled Quantization and Variable Length Encoding
model (AEQVE). MDZ [25] is an adaptive error-bounded
lossy compression framework. It proposes three compression
strategies, VQ, VQT and MT, based on the data pattern of
space and time dimensions, and then adaptively selects the
most excellent compressor.

III. COMPRESSION FRAMEWORK

In order to achieve a higher compression ratio while meet-
ing the user’s data accuracy requirements, we design the
HBC framework. As shown in Fig. 1, HBC includes a data
accuracy-aware lossy compression layer and a data feature-
aware lossless compression layer. The framework adaptively
adjusts the error value according to different data ranges to
achieve efficient lossy compression, and further selects the
optimal lossless compression strategy for the lossy compressed
result.

At the top layer of the framework, we design a lightweight
lossy compression algorithm called VE-SCA to fit the orig-
inal data piecewise. For each fitted segment, we store
only the start and end points while discarding intermediate
points within error. The error threshold of the algorithm
is not fixed, but can be dynamically adjusted according
to the user’s pre-defined accuracy requirements. For exam-
ple, it can be shown in Fig. 2 that the raw data with 14
points is segmented and fitted by Variable Error Segmented
Compression Algorithm (VE-SCA) into 6 segments. In the
above process, only 8 data points are retained after remov-
ing the intermediate data points in the segment, namely
{(T2, 2), (T3, 3), (T4, 4), (T6, 1), (T7, 3), (T9, 5), (T14, 6)}, so
the storage space is saved by 53%. Since the compression
process of VE-SCA only involves simple mathematical cal-
culations and logical judgments, its compression efficiency is
very high. We will describe VE-SCA in detail in Section IV.

At the bottom layer of the framework, we use supervised
learning to get an Efficient Adaptive Offline Selector
(EAOS). In the model pre-training phase, we first label
the time series data, that is, get the method with the
highest compression efficiency by traversing the compression
method pool. We then extract several data features that
are beneficial for the choice of compression strategy for
labeled data. We put a large number of <features, label>
items into a supervised model for training to get the EAOS.
In the model prediction stage, We will first divide the
lossy compressed data into more fine-grained small pieces
by using a sliding window. Then, according to the data
features of each window, the most appropriate compression

User

Requirement

Data Accuracy-Aware Lossy Compression Layer

Data Feature-Aware Lossless Compression Layer

Model Training

Supervised Learning

Model Training

Supervised Learning

Feature Extraction

Basic

Information

Central

Tendency

Discrete

Tendency

Distribution

Shape

Feature Extraction

Basic

Information

Central

Tendency

Discrete

Tendency

Distribution

Shape

Lossy Compression

VE-SCA

Lossy Compression

VE-SCA

Final Result

Feature Selection

 Labeled Time

Series Data

 Labeled Time

Series Data
Input Output Output

Lossy-Compressed DataLossy-Compressed DataLossy-Compressed Data

Time Series DataTime Series Data

Input Output

Output

Input

Model Pre-Training

Lossless

Compression

Optimal Algorithm

Lossless

Compression

Optimal Algorithm

Strategy Selector

EAOS

Strategy Selector

EAOS

Fig. 1: The architecture of HBC.

algorithm is quickly selected from the compression method
pool for them, respectively. As shown in Fig. 2, at the
lossless compression layer, the lossy compressed data
{(T1, 2), (T5, 2), (T8, 2), (T10, 4), (T11, 9), (T12, 10), (T13, 7),
(T15, 7)} is partitioned into two parts by sliding windows,
namely the data of sliding window one {(T1,2), (T5,2),
(T8,2), (T10,4)} and the data of sliding window two {(T11,9),
(T12,10), (T13,7), (T15,7)}. The data features of these two
windows are different, and the optimal compression ratio
cannot be achieved if the existing single compression
algorithm is adopted. However, due to multiple rounds of
model training, EAOS finds the relationship between the time
series data features and the optimal compression algorithm.
Therefore, by using our pre-trained EAOS components, the
most matching compression algorithm, RLE and Simple8b,
can be quickly selected based on the data characteristics
of each window. This approach not only improves the
compression ratio, but also avoids the time consumption
caused by traversing the method pool. We will describe
EAOS in detail in Section V.

IV. DATA ACCURACY-AWARE LOSSY COMPRESSION
LAYER

In practical applications, users have different accuracy re-
quirements for data in different numerical ranges. They just put
forward higher accuracy requirements for highly sensitive data.
Therefore, indiscriminate data compression with zero error or
uniform error will not produce high compression space bene-
fits. Considering the actual needs of users, we can reasonably
implement lossy (lossless) compression with different error
thresholds (∆E ≥ 0) for data in different numerical ranges
while ensuring data accuracy, so as to minimize the occupation
of data space. To this end, we design VE-SCA, which involves
a piecewise fitting strategy and a dynamic error adjustment
strategy to achieve data accuracy-aware lossy compression.

A. Segment Fitting Strategy

The segment fitting strategies mainly use a linear function
to represent a set of continuous data whose data fluctuation
is less than the error threshold. We mainly implement a
segment fitting strategy by constructing parallelogram. The
parallelogram is constructed by four points whose upper and
lower sides are ∆E away from the current data point and
the previous stored data point, respectively. If the constructed
parallelogram can completely contain all the points before the
current point, then the fitting of this segment can be continued.
Otherwise, store the previous point of the current point, and
start the fitting operation of the new segment from the previous
point. We intercept T1 to T8 of the raw data in Fig. 2, and take
it as an example to show the segment fitting process in Fig. 3.
For ease of explanation, we rename these 9 data points from
A to I. As shown in Fig. 3, the parallelogram A+F+A−F−

only contains points B, C and E, but not point D, thus ending
the fitting of the current segment. Then store point E and use
it as the starting point for the new segment.

When implementing the algorithm, we transform the prob-
lem of whether the parallelogram contains all the points into
a comparison of slopes. We define 8 elements of a segment,
namely, starting point (SP), end point (EP), current point
(CP), threshold value (∆E), upper pivot points (UPP), lower
pivot points (LPP), upper door (UPdoor), and lower door
(LOWdoor). The SP of each compression segment is the first
data point to be stored. We choose the UPP and LPP with
the distance of ∆E from the SP to construct two virtual
doors, which are called UPdoor and LOWdoor, respectively.
As shown in Fig. 3, the elements of compression segment 1
are SP = A, EP = E, ∆E = (3+1) / 2, UPP = (T1, 4) = A+,
LPP = (T1, 0) = A−, UPdoor = A+D, LOWdoor = A−F .

Meanwhile, during the fitting process, we need to calculate
the following three slopes:

VE-SCA

Dynamic ∆E 2 2 1.6 0 0 1

Piecewise

Fitting

T1 T2 T3 T4 T6 T7 T9 T10 T11 T12 T13 T14 T15

2 2 3 4 1 3 5 4 9 10 7 6 7

Data

Elimination

T1 T5 T8 T10 T12 T13
53% reduction

2 2 2 4 10 7

T5

2 2

T8

T11

9

T15

7

UserRequirements
Range [0, 5] (5, 8] (8, 10]

Error [1, 3] [0.3, 0.7] 0

In
p

u
t

RawData
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

2 2 5 2 2 0 2 5 2 9 10 7 6 7

L
o

ss
y

C
o

m
p

re
ss

io
n

sliding window = 4

L
o

ss
le

ss

C
o

m
p

re
ss

io
n Lossy

 compressed data

T1 T5 T8 T10 T11 T12 T13 T15

2 2 2 4 9 10 7 7

Menthod Encoded Encoded

RLE (14bit) 0110010 0010100 (28bit) 0011001 0011010 0100111

Delta (15bit) 0010 0 0 100000010 (23bit) 1001 100000001 101000011 0

Simple8b (20bit) 0101 0010 0010 0010 0100 (20bit) 0101 1001 1010 0111 0111

Fig. 2: An example of using the HBC architecture for compression.

4

ΔE

ΔE

T1 T2 T3 T4 T5 T6 T7 T8 timestamp

value

Storage Point Data point

A

A+

A-

B

C

D

E

E+

F

G

H

0

1

2

3

5

E-

Fitting Line 1 Fitting Line 2

T9

-1

D+

G+

H+

I+

F-

H-

I-

F+

Outside of A+F+F-A-

Outside of E+I+I-E-

UPdoor = A+D

LOWdoor = A
-F

Fig. 3: Segmentation Principle of Lossy Compression Algo-
rithm VE-SCA.

KUPdoor = max{(CP.V − (SP.V − E))/(CP.T − SP.T)} (1)

KLOWdoor = min{(CP.V − (SP.V +E))/(CP.T −SP.T)} (2)

K(SP.CP)) = (CP.V − SP.V)/(CP.T − SP.T) (3)

where CP.V (SP.V) and CP.T (SP.T) are the value and
time of the current (last saved) data point, and ∆E is the data
accuracy. The KUPdoor

calculated by Equation (1) represents
the slope of the UPdoor, which is equal to the maximum value
of the slope between UPP and subsequent data points. The
KLOWdoor

calculated by Equation (2) represents the slope of
the LOWdoor, which is equal to the minimum value of the
slope between LPP and subsequent data points. The K(SP,CP)

calculated by Equation (3) represents the slope between the

current point and the starting point. When KLOWdoor
≤

K(SP,CP) ≤ KUPdoor
, it indicates that the fluctuation of

the data in the segment is within the error threshold, and
the fitting of this segment can continue. Otherwise, stop the
rotation of the two doors, record the previous point as the EP
of this compression segment, and then start fitting the new
compression segment from it.

For example, the value changes of KUPdoor
, KLOWdoor

and
K(SP,CP) in Fig. 3 are shown in Table I. Because MAX[
KA+B = −2, KA+C = −0.5, KA+D = 0, KA+E = −0.5
] = KA+D, we do not update UPdoor at point E, that is, the
UPdoor is still A+D. In addition, it can be seen that KLOWdoor

= A−F = 0.2 >K(SP,CP) = −0.2 at point F, which indicates
that the condition for stopping rotation has been reached. So,
we will end the fitting of comparison segment 1, record the
previous point E as the EP of this segment, and use it as the
SP of the new compression segment 2. Compared with storing
the original 4 data points (A, B, C, D, E), we only need to
store 2 data points (A, E) after compression, which greatly
saves storage space.

When decompressing, linear interpolation is used to solve
the compressed data. And VE-SCA can ensure that the max-
imum error between the decompressed data and original data
does not exceed the error threshold (∆E).

B. Dynamic Error Adjustment Strategy

From the above segment fitting strategy, it can be clearly
seen that the error threshold ∆E is a key parameter to
control the trade-off between the data compression rate and
error. The larger the ∆E, the higher the data compression
ratio and the greater the data compression error. The existing
schemes utilize the fixed compression deviation; however, in
real applications, users have different accuracy requirements
for data in different numerical ranges. Therefore, we design
a dynamic error adjustment strategy in this section: First,

TABLE I: The rotation process of the upper door and lower door in the example of Fig. 3

Raw Data
A B C D E F G H I
T1 T2 T3 T4 T5 T6 T7 T8 T9
2 2 3 4 2 1 3 2 5

K(UPP,CP) - A+B=-2 A+C=-0.5↑ A+D=0↑ A+E=-0.5↓ A+F=-0.6↓
E+G=-0.5↑ E+H=-0.67↓ E+I=0.25↑

E+F=-3

K(LPP,CP) - A−B=2 A−C=1.5↓ A−D=1.3↓ A−E=0.5↓ A−F=0.2↓
E−G=1.5↑ E−H=0.67↓ E−I=1.25↑

E−F=1

KUPdoor
- A+B=-2 A+C=-0.5 A+D=0 A+D=0 A+D=0

E+G=-0.5 E+G=-0.5 E+I=0.25
E+F=-3 -

KLOWdoor
- A−B=2 A−C=1.5 A−D=1.3 A−E=0.5 A−F=0.2

E−F=1 E−H=0.67 E−H=0.67
E−F=1 -

K(SP,CP) - AB=0 AC=0.5 AD=0.6 AE=0 AF=-0.2 EG=0.5 EH=0 EI=0.75

we dynamically adjust the error threshold ∆E based on the
different numerical ranges. Then, for the same numerical
range, we fine-tune the error threshold ∆E based on the data
fluctuation.

1) Error Adjustment for Different Numerical Ranges: Ac-
cording to the numerical ranges, we divide the data into several
levels of accuracy: ACC1, ACC2, ACC3, · · · , ACCi. Then,
we use different error threshold standards for different levels.
Specifically, the accuracy requirements are divided into i levels
based on numerical ranges. Then, for the data belonging to the
ACC1, its accuracy required by users is the highest, so the
smallest error threshold criterion should be adopted; for the
data belonging to the last level, its accuracy requirement is
the lowest, so the maximum error threshold criterion should
be adopted. The above specific rules can be represented as
follows:

∆E ∈

[∆Emin1 ,∆Emax1] if D ∈ ACC1

[∆Emin2 ,∆Emax2] if D ∈ ACC2

· · ·
[∆Emini

,∆Emaxi
] if D ∈ ACCi

(4)

where i is the total number of accuracy levels, ACCi repre-
sents an accuracy level of the numerical range, ∆Emini

and
∆Emaxi are the lower and upper bounds of the error threshold
required for the corresponding value range. And ∆Emin1 ≤
∆Emax1

< ∆Emin2
≤ ∆Emax2

< · · · < ∆Emini
≤ ∆Emaxi

.
We set the corresponding error threshold criterions for

different numerical ranges according to the user’s requirements
before compression, and because of this, we can achieve a
greater trade-off between data compression rate and error for
different data.

2) Error Adjustment for The Same Numerical Ranges:
On the basis of error adjustment between ACCm and ACCn

(1 ≤ m and n ≤ i), we further consider using data fluctuations
to adjust the ACCi error threshold between ∆Emini and
∆Emaxi , so as to improve compression performance. The
data fluctuation of time series data, denoted as K, can be
represented as

K =
FD

FD′ (5)

where FD is the fitting degree of the previous compression
segment and FD′ is the other one. The so-called fitting degree
refers to how many points can be fitted in a line segment fitting

A higher FD indicates that the time series data has remained
stable for a longer period.

In order to avoid the impact of data fluctuation on the
compression error, we slightly adjust the ∆E within the
error threshold range of the corresponding accuracy level.
Specifically, when |K − 1| ≤ α, the current data fluctuation
is within the acceptable threshold α specified by the user, so
the error threshold will not be adjusted. Otherwise, we will
adjust the error threshold ∆E: When K is greater than 1, it
indicates that the time series data has a gradually stable trend,
and because of this, we should increase the ∆E to achieve
a greater compression ratio. On the contrary, when K is less
than 1, the time series data has a tendency to fluctuate, and we
should decrease the ∆E to obtain a lower compression error.
The specific rules can be represented as follows:

∆En =

{
∆En−1F (K) if |k − 1| > α

∆En−1 if |k − 1| ≤ α
(6)

where F (K) is the amplitude modulation function, and we
set F (K) = (K − 1)3 + 1. We find that the value of the first
derivative F (K)′ of the amplitude modulation function F (K)
continuously increases on both sides where K is equal to 1.
This means that the value of F (K) changes more and more
violently, which is very beneficial for quickly adjusting ∆E
to deal with data fluctuations.

C. VE-SCA

The core of VE-SCA is the segment fitting strategy and
dynamic error adjustment strategy mentioned above. The
specific pseudo-code is shown in Algorithm 1. The main
implementation steps are as follows:

Step 1: Sequentially extract a data point from the uncom-
pressed data, and judge its numerical range and correspond-
ing accuracy level ACCi according to the user’s predefined
requirements. If the accuracy level of the current data is the
same as that of the previous data, proceed to Step 2; If not,
skip to Step 5.

Step 2: Judge whether the fitting degree FD of the current
compression segment exceeds the maximum value FDmax. If
not, proceed to Step 3; if it exceeds, skip to Step 4.

Step 3: According to the rules of the segment fitting strategy,
determine whether the newly acquired data can be added to
the current compression segment. In other words, it is to judge

whether the condition KLOWdoor
≤ K(SP,CP) ≤ KUPdoor

is
true. If it is not true, proceed to Step 4; otherwise, add 1 to
the FD of the current compressed segment and skip to Step
6.

Step 4: End the current compression segment, and record
the previous data point of the newly acquired data, which is the
end point (EP) in this compression segment. Then update the
value of FD′ and reset the value of FD to 1 simultaneously.
In addition, the error threshold ∆E parameter is adjusted
by the amplitude modulation function F (K). Use the new
parameter value to start a new compression segment; the
previous data is the starting point (SP) of the new compression
segment, then skip to Step 6. Note that the value of ∆E after
adjustment cannot exceed the corresponding error threshold
range ([∆Emini

,∆Emaxi
]) set by the user.

Step 5: End the current compression segment and record
the previous data point of the newly acquired data, which
is the end point (EP) in this compression segment. Adjust
the parameter ∆E according to the accuracy level of the
current data. The ∆E of the new compression segment is
calculated by ∆E = (∆Emini

+ ∆Emaxi
) / 2. At the same

time, initialize FD and FD′ to 1. Use new parameters to start
a new compression segment, the previous data is the starting
point (SP) of the new compression segment, proceed to Step
6.

Step 6: Judging whether there is new data. If there is, skip
to Step 1 to start a new round of logical judgment; if not, exit
the program.

V. DATA FEATURE-AWARE LOSSLESS COMPRESSION
LAYER

After the lossy compression at the top layer of HBC, the
original time series data D = {(T1, V1), (T2, V2), (T3, V3) ,(T4,
V4).......(Ti−2, Vi−2) ,(Ti−1, Vi−1),(Ti, Vi)} is compressed into
several feature data points D′ = {(T1, V1), (T4, V4)......(Ti−2,
Vi−2),(Ti, Vi)}. Lossless compression can be exploited to
further reduce storage space. However, the lossy compressed
data D′ does not preserve the locality of the data, and it also
has feature diversity. Therefore, a single lossless compression
method cannot achieve an efficient compression performance.
In order to solve this problem, we design a data feature-aware
lossless compression layer in HBC. The layer includes an Ef-
ficient Adaptive Offline Selector (EAOS) based on supervised
learning, which can select the optimal lossless compression
algorithm from the compression algorithm pool for D′. It
consists of three phases, namely feature extraction, model
training, and compression algorithm selection.

A. Feature Extraction

In the compression of D′, different compression algorithms
are suitable for it with different features. Meanwhile, there are
many factors that can affect the performance of compression
algorithms. Therefore, in this section, we extract the features
that affect compression performance from four different di-
mensions: basic information, central tendency, discrete ten-

Algorithm 1: VE-SCA
input : Doriginal =

{(T1, V1), (T2, V2), (T3, V3)....(Tn, Vn)},
DS CD = [H,M,L], FDmax = 50

output: Dcompressed = {(T1, V1), (T4, V4).....(Tn, Vn)}
1 Initialize:FD = FD′ = 1, Dcompressed = {(T1, V1)},

First D = (T1, V1), UPdoor = −∞, LOWdoor = +∞
DS,∆E ⇐ DSCD.get(< T1, V1 >)

2 for (Ti, Vi) in Doriginal − (T1, V1) do
3 Now D = (Ti, Vi);
4 DS′, ∆E′ ⇐ DS CD.get((Ti, Vi));
5 if DS == DS′ then
6 if FD < FDmax and SegR (First D, ∆E, Now D)

then
7 FD = FD + 1;
8 end
9 if FD > FDmax or not SegR (First D, ∆E,

Now D) then
10 Dcompressed.add (Ti−1, Vi−1) and (Ti, Vi);
11 FD′ = FD, FD = 1, First D = (Ti, Vi);
12 Update ∆E according to Equation (4)-(6);
13 DS ⇐ DS CD.get((Ti, Vi));
14 end
15 else
16 Dcompressed.add (Ti−1, Vi−1) and (Ti, Vi);
17 FD′ = FD, FD = 1, First D = (Ti, Vi);
18 DS ⇐ DS CD.get((Ti, Vi));
19 end
20 end
21 Function SegR(First D, ∆E, Now D):
22 now up = [Now D.Vi - (First D.Vi + ∆E)] /

(Now D.Ti - First D.Ti);
23 now low = [Now D.Vi - (First D.Vi - ∆E)] /

(Now D.Ti - First D.Ti);
24 if now up > updoor then
25 UPdoor = now up;
26 end
27 if now low < LOWdoor then
28 LOWdoor = now low;
29 end
30 if UPdoor >= LOWdoor then
31 return False;
32 else
33 return True;
34 end
35 end

dency, and distribution shape. These data features will be used
in the selection of the compression algorithm.

1) Basic information features: First, there are mainly two
types of data types, namely floating-point and integer. How-
ever, the encoding of floating-point often requires 32 or 64 bits,
which is much higher than the encoding requirements of most
integers, and because of this, algorithms suitable for floating-
point compression cannot perform well in integer compression.
Therefore, the data type is selected as one of the characteristics
for selecting a compression algorithm.

Similarly, the sign bit of the data needs to be checked to
determine whether the data is signed or unsigned. The reason
is that the compressed signed data may not be able to use
leading zeros for compression because the highest bit of the
negative number is 1. Therefore, signed and unsigned data will
affect the selection of compression algorithms. In addition,
the maximum and minimum values of time series data can
determine the value range of the data sequence, which can

help to exclude some inapplicable compression algorithms and
select a more suitable one.

In summary, the selected basic information features are
DType, LSign, VMax and VMin, and they can be represented
as

BIF = (DType, LSign, VMax, VMin) (7)

2) Central tendency features: The central tendency features
refer to the degree to which a set of data is close to the central
value. It reflects the overall value of a set of data, based
on which it is beneficial to choose an efficient compression
algorithm. For instance, the principle of some algorithms is to
achieve a high compression ratio by compressing redundant
leading zeros, and because of this, data with smaller values
tend to have more leading zero redundancy. In addition, the
compression of some algorithms needs to add flag bits, so it
will lead to the introduction of more extra bits for data with
large values. For these reasons, we use mean, median and
mode as representatives, which complement each other and
can well characterize the central tendency of the data.

As shown in Table, we select the following central tendency
features: DMean, DMedian and DMode, which can be repre-
sented as

CTF = (DMean, DMedian, DMode) (8)

3) Dispersion tendency features: The central tendency fea-
tures can well represent the degree of centralization of the
data, but they ignore the degree of dispersion of the data, so
they can not characterize the data comprehensively when the
data fluctuates greatly. However, data fluctuation is one of the
most important factors affecting the selection of compression
algorithms, because many compression algorithms achieve
high compression ratios based on the characteristics of small
local data fluctuations.

In this section, we complement the data features with
dispersion tendency features. First, the standard deviation is
one of the most commonly used indicators to measure the
degree of data dispersion. It can be formalized as

σ =

√∑n
i=1(Vi − V̄)

2

n− 1
(9)

where V̄ represents the average value of the data, Vi represents
each value in the time series, and n represents the number of
data.

Then, the interquartile range (IQR) is further utilized to
strengthen the representation of the degree of dispersion of
the data. It can be measured as

IQR = Q3 −Q1 (10)

where Q3 is the median of the first half when the dataset is
ordered from high to low, while Q1 is the median of the second
half. It reflects the degree of dispersion of the middle 50% of
the data. In addition, unlike the standard deviation, IQR is not
affected by extreme values and outliers, and can exclude the
influence of outliers on data fluctuations.

Therefore, the selected dispersion tendency features are σ
and IQR, and can be represented as

DTF = (σ, IQR) (11)

4) Distribution shape features: In addition to the above
features, we also analyze the distribution shape features of
time series data to measure the symmetry, skew angle, and
the flatness of the data distribution shape.

First, we use the kurtosis coefficient to indicate how flat the
time series data is. It can be formalized as

Kurtosis =
1

n− 1

n∑
i=1

(
Vi − V̄

)4
σ4

− 3 (12)

A kurtosis coefficient of 0 means that the data distribution is
a standard normal distribution. The greater the kurtosis, the
more prominent the data distribution, and the more volatile
the data. The kurtosis coefficient can well reflect the size of
data fluctuations and can be used to guide the selection of
compression algorithms.

Meanwhile, we use the skewness coefficient to measure
the symmetry of the time series data distribution. It can be
formalized as

Skewness =
1

n− 1

n∑
i=1

(
Vi − V̄

)3
σ3

(13)

The skewness coefficient is used to describe the symmetry
and offset degree of the data distribution, and can be used to
indicate the distribution of extreme points, thereby helping to
select an appropriate compression algorithm.

Therefore, as shown in Table II, HBC selects the final
distribution shape features DKurt and DSkew, which can be
represented as

DSF = (DKurt, DSkew) (14)

TABLE II: Selected features

Feature Description

DType The data type
LSign The sign bit of the data
VMax The maximum values of the data
VMin The minimum values of the data
DMean The mean of the data
DMedian The median of the data
DMode The mean of the data
σ The standard deviation of the data
IQR The interquartile range of the data
DKurt The kurtosis coefficient of the data
DSkew The skewness coefficient of the data

B. Model training

The above four types of data features will be used for model
training. We utilize supervised learning to obtain an EAOS
to achieve fast lossless compression for the data D′ passed
down from the lossy compression layer. The idea of EAOS is
based on the observation that for data with similar features,
the compression benefits obtained by the same compression
algorithm are also similar.

EAOS transforms the compression problem into a multi-
classification problem of time series data. Specifically, in
the model training phase, we first split D′ into several
subsequences according to the window size W . Then, we
extract the corresponding features of the data subsequence,
and traverse the compression method pool to select the optimal
compression algorithm for the subsequence. The compression
method pool contains many classic algorithms, such as RLE
[13], Delta [14], Delta-of-Delta [16], XOR [16], Zig-Zag [26],
Simple8b [27], and Varint [28]. These methods pretty much
cover most scenarios where data is efficiently compressed.

As a result, we formalize a piece of data into a set of data
features with a label to obtain a training sample z, which can
be expressed as z = (x, y), where x represents the feature
vector of the data, namely x = (BIF,CTF,DTF,DSF),
and y is the classification label of x: we use “0” ∼ “6” to
represent the above seven compression methods, and the label
is the final selected optimal algorithm. After a period of data
sampling, we obtain the labelled training dataset, which can
be used with supervised learning to train our EAOS.

C. Compression algorithm prediction
Through model training, we discover the relationship be-

tween data features and optimal compression algorithms. Thus,
EAOS can be utilized to predict the appropriate compression
algorithm for data. The basic process of compression algorithm
prediction is as follows. First, we split the data passed down
from the upper layer into several subsequences according
to the window size, and then extract the features of each
subsequence as in the model training phase. However, the
difference is that the samples we get at this time are unlabeled
data. Then, for each subsequence, we treat it as a classification
problem to judge which compression algorithm is the best
algorithm for this subsequence. Therefore, EAOS is used to
make classification decisions based on the features of the
data sequence. The output is the final selected compression
algorithm. In other words, the data will be further lossless
compressed using the compression algorithm predicted by
EAOS at the granularity of the window size.

VI. EXPERIMENT

In this section, we compare HBC with three state-of-the-
art compression schemes to demonstrate its efficiency and
universality. Meanwhile, ablation experiments are conducted
to analyze the performance of the lossy compression algorithm
VE-SCA at the upper layer and the lossless compression model
EAOS at the lower layer.

A. Experimental setup
1) Dataset: We select six time-series datasets, of which two

are from real datasets in real life, and the other four are from
the public dataset UCI [29]. A detailed description of each
dataset is provided in Table III. These datasets are all multi-
dimensional, and each dataset contains a large number of data
points. Due to the space limitation of the paper, we select
one of the representative dimensions to display the results and
analyze the specific compression effect in most cases.

2) Baseline: In this section, we first select three state-of-
the-art compression schemes to compare with the proposed
HBC, namely LFZip [11], AMMMO [10], and Chimp128 [7].
In addition, we propose the variants of HBC, that is, HBC UP,
HBC LOW as comparison objects of ablation experiments to
further analyze the performance of the lossy compression algo-
rithm VE-SCA at the upper layer and the lossless compression
model EAOS at the lower layer.

3) Indicator: When evaluating the compression schemes,
we mainly refer to four indicators, namely compression ratio
(CR), compression time (CT), decompression time (DT), and
compression error (CE). CR is the ratio of the compressed
data size to the original data size, which measures the storage
space that the compression algorithm can reduce. CT and
DT are the time spent by the algorithm in compression and
decompression, reflecting the compression efficiency of the
algorithm. CE is an indicator for lossy compression that
measures the difference between the decompressed data and
original data.

B. EAOS Model Selection

The performance of EAOS relies on the trained compression
model. Therefore, in this section, we conduct experiments
to study the performance of different supervised learning
algorithms. We choose five typical supervised learning algo-
rithms: Random Forest (RF), Support Vector Machine (SVM),
XGBOOST, Convolutional Neural Network (CNN), Multilayer
Perceptron (MLP).

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

RF(area = 0.64)
SVM(area = 0.70)
XGBOOST(area = 0.76)
CNN(area = 0.79)
MLP(area = 0.83)
Random classifier(area = 0.5)

Fig. 4: Comparison of ROC indicators of different models.

Meanwhile, we select 100 pieces of data in 6 datasets, and
each piece of data is continuous data randomly intercepted
from the same dimension or different dimensions in each
dataset. Some of the data points will be retained after lossy
compression of the data, and then we use a sliding window
with a length of 100 as a unit to identify the data features
and assign the optimal compression algorithm. According to
statistics, a total of 1528 sliding windows are generated during
the lossless compression of these 100 pieces of data.

The classification results on 5 different models are shown in
Fig. 4. This figure shows the Receiver Operating Characteristic
Curve (ROC) indicators of the models, and the curve closer to

TABLE III: Experimental dataset

Source Name Description Dimension One Dimension points

Real Ser Mer Performance metrics on the server 6 133078
Real Glo Sat Global satellite navigation systems monitoring 7 44371
UCI Pow Con Power consumption of three distribution networks 9 52417
UCI Air Qua Air pollutants and related meteorological variables 15 35065
UCI Hum Act Heterogeneous Human Activity Recognition 5 3540963
UCI Hyd Sys Condition monitoring of hydraulic systems 30 2205

the upper left corner indicates better prediction performance.
We can find that the prediction results of the MLP model
are better than other models, and it can achieve a precision
rate of 80% under 20% false positives rate. Moreover, the
Area Under ROC Curve (AUC) of MLP, that is, the area
enclosed by the ROC curve and the horizontal axis, is also
higher than other models. This is mainly because during the
training process, MLP can continuously adjust the weights and
biases through the back-propagation algorithm to minimize
the loss function, thereby improving the prediction accuracy
of the model. So, we finally choose MLP for prediction in
EAOS. Since the features of each dataset we use for training
are different, and the features within different periods of the
same dataset are also different, the EAOS obtained through
multiple rounds of model training can more comprehensively
learn the relationship between data features and the optimal
compression algorithm. This provides assurance for its accu-
racy in the model prediction stage.

Ser_Mer Glo_Sat Pow_Con Air_Qua Hum_Act Hyd_Sys0

10

20

30

40

50

Co
m

pr
es

sio
n

Ra
tio

(%
)

2.
20 2.
38 4.

07

1.
50

1.
08

0.
552.

40 2.
60

4.
91

1.
60

1.
13

0.
56

31
.1

5

25
.9

1

32
.7

9

18
.4

8

28
.4

9

35
.9

7

4.
13

2.
51

11
.3

9

3.
13

1.
88

1.
53

27
.2

5

16
.7

2

36
.7

7

16
.0

5

22
.7

3

21
.6

9

27
.5

5

16
.8

9

50
.5

1

14
.3

1

20
.6

2 22
.4

7

HBC
HBC_UP
HBC_LOW
LFZip
AMMMO
Chimp128

Fig. 5: Comparison of compression ratios for one-dimensional
data.

C. Compression Ratio

In this section, we implement six compression schemes on
one-dimensional data and multi-dimensional data, respectively,
and their comparison ratios are shown in Fig. 5 and Fig. 6.

The effect of HBC is the best among all compression
schemes. As shown in Fig. 5, its average CR on six one-
dimensional datasets is only 1.96%. This is because HBC
adopts a combination of lossless compression and lossy com-
pression, which provides users with more efficient storage
space compression. Compared with two lossless compression
schemes, AMMMO and Chimp128, HBC reduces the storage
space by 91.66% and 92.27% respectively by compressing
data with low precision requirements. Compared with the

lossy compression LFZip, the CR of HBC is on average
52.1% lower than them. The reason is that the error threshold
of the VE-SCA lossy compression algorithm is adaptively
adjusted according to the data accuracy requirements and
data fluctuations. This dynamic error threshold strategy allows
HBC to fully utilize the user’s different accuracy requirements
for different data, thereby further reducing the storage space.
However, LFZip compresses all data with a unique minimum
error threshold, which is an inefficient compression strategy.

In addition, the variant HBC UP outperforms LFZip on
most datasets, but on some datasets with stable data features
(e.g., Glo Sat), LFZip performs slightly better due to its use
of NLSM prediction compression. During the compression of
HBC UP, a large number of redundant data (data within the
error range) that do not change much in the original data are
deleted, and only a small amount of valuable information for
users is retained. Therefore, the storage space required for
the data will be greatly reduced. The average CR of another
variant HBC LOW is 28.8%, which is 1.23 times and 1.13
times the average CR of AMMMO and Chimp128. Although
the compression schemes of AMMMO and Chimp128 both
adapt a two-combined compression strategy that first performs
delta-like arithmetic operations on time series data and then
encodes the operated data, our HBC LOW still outperforms
them due to its ability to select the optimal compression
algorithm based on the feature of the data.

Ser_Mer Glo_Sat Pow_Con Air_Qua Hum_Act Hyd_Sys0

10

20

30

40

50

Co
m

pr
es

sio
n

Ra
tio

(%
)

1.
99 2.
18 2.
69

2.
03

1.
43

0.
562.

09 2.
85

2.
79

2.
22

1.
64

0.
58

24
.3

3

21
.6

9

37
.3

1

14
.6

6

30
.8

6

26
.6

7

2.
66

2.
45

10
.5

0

4.
03

1.
53 1.
94

20
.7

0

17
.5

1 20
.8

8

13
.8

3

17
.7

9

21
.9

8

38
.7

6

21
.1

4

46
.7

3

25
.3

2

23
.4

7

23
.6

4

HBC
HBC_UP
HBC_LOW
LFZip
AMMMO
Chimp128

Fig. 6: Comparison of compression ratios for multi-
dimensional data.

As shown in Fig. 6, HBC, HBC UP, and HBC LOW can
still maintain good compression ratios in multi-dimensional
data, which are 1.81%, 2.03%, and 25.92%, respectively. This
is because both VE-SCA and EAOS in HBC have self-adaptive
capabilities. Compared with HBC UP and HBC LOW, LFZip

and AMMMO have relatively good compression ratios, 3.85%
and 18.78%, respectively. This is because they all use machine
learning methods to make their compression schemes adaptive
to data features. However, the CR of Chimp128 (29.84%) is
the worst. The reason is that Chimp128’s compression scheme
only uses a single XOR compression, which cannot adapt to
multi-dimensional data with complex data characteristics.

D. Efficiency of Compression and Decompression

In this section, we select 2000 data points on the concerned
one-dimensional datasets to evaluate the efficiency of six
compression schemes, and the results are shown in Table IV
and Table V.

TABLE IV: Compression time

HBC HBC UP HBC LOW LFZip AMMMO Chimp128

Ser Mer 13.39 0.29 28.52 725.41 16.27 145.68
Glo Sat 11.76 0.10 23.21 465.94 14.68 153.20

Pow Con 19.85 0.56 30.74 943.03 23.22 139.14
Air Qua 13.46 0.08 19.05 618.97 12.02 107.31
Hum Act 14.53 0.14 22.53 560.47 13.85 112.65
Hyd Sys 9.00 0.17 17.96 649.36 15.88 127.44
Average 13.66 0.23 23.67 660.53 15.99 130.90

As shown in Table IV, the average CT of the HBC UP
scheme is the least (0.23µs), which reduces the time overhead
by 89% on the basis of LFZip. This is mainly because the VE-
SCA used in HBC is only composed of simple mathematical
operations. In addition, compared with lossless compression
AMMMO and Chimp128, the CT of HBC LOW is 1.48
times and 0.18 times of them, respectively. The reason is
that HBC LOW uses EAOS to select the optimal compression
algorithm based on data features and pre-training results, so
its compression efficiency is high.

TABLE V: Decompression time

HBC HBC UP HBC LOW LFZip AMMMO Chimp128

Ser Mer 28.51 0.68 38.92 738.96 33.66 123.74
Glo Sat 19.25 0.52 30.88 419.35 25.82 118.56

Pow Con 30.89 1.26 38.56 870.12 34.49 130.42
Air Qua 11.73 0.21 18.39 533.65 18.83 85.07
Hum Act 14.66 0.39 20.24 613.77 19.27 98.96
Hyd Sys 18.39 0.46 27.43 592.58 25.58 94.21
Average 20.57 0.59 29.07 628.07 26.28 108.49

Therefore, among HBC, AMMMO, Chimp128, and LFZip,
the compression efficiency of HBC is the best, and it can
save 15%, 90% and 97% of the CT respectively. This is all
due to the lightweight two-layer compression strategy of our
HBC scheme. The lightweight VE-SCA lossy compression
retains only a small number of data points, which also saves a
lot of time for lossless compression. Although the AMMMO
scheme is also an intelligent two-layer compression scheme,
it will waste a lot of time due to the selection of parameters
at the first compression layer. The reason why the efficiency
of the Chimp128 scheme is poor is that it involves a lot of
bit operations during compression, and its strategy of using
historical data for compression further increases the time
overhead. The efficiency of lossy compression LFZip is the
worst among all schemes, because the compression of LFZip

will cause a lot of overhead due to the predictor during
compression. Because of the above factors, we also obtained
similar results in Table V. The decompression efficiency of
HBC is also better than that of AMMMO, Chimp128 and
LFZip.

E. Compression Error
In this section, we evaluate compression errors of HBC and

LFZip on six one-dimensional datasets, and the results are
shown in Fig. 7. The compression error of HBC is greater
than that of LFZip on most datasets. This is mainly because
HBC adopts a dynamic error strategy, while LFZip adopts a
unique minimum error strategy. The large compression error
of HBC is due to the fact that users have relatively low
accuracy requirements for some data. We make full use of
this requirement to achieve a high compression ratio. Taking
the dataset (Pow Con) with relatively large data fluctuations
as an example, Fig. 7 shows that the average compression
error of LFZip on Pow Con dataset has reached 16.37, which
means that LFZip cannot ensure compression with the lowest
error threshold due to the unpredictable data.

Ser_Mer Glo_Sat Pow_Con Air_Qua Hum_Act Hyd_Sys

0

100

200

300

400

500
Er

ro
r

450.21

0.74
2.58 0.04 0.28

4.12

378.76

0.43
16.37 0.35 0.06

2.81

HBC
LFZip

Fig. 7: Comparison of compression errors between HBC and
LFZip.

[50,70] [70,80] [80,90]
Data Range

1

2

3

4

5

6

Da
ta

 E
rro

r

Fig. 8: Compression error on the Pow Con dataset.

VII. CONCLUSION

Traditional time series data compression schemes do not
take into account the different accuracy requirements of users

for different value ranges, so the compression of data stor-
age space is limited. In this paper, we propose a Hybrid
Bilayer Compression (HBC) framework combining lossy and
lossless compression for time series data. HBC consists of
two layers: the top layer is a data accuracy-aware lossy
compression layer, which includes a dynamic Variable Error
Segmented Compression Algorithm (VE-SCA) algorithm that
can adaptively adjust the error threshold of lossy compres-
sion based on the user’s accuracy requirements for data in
different numerical ranges; and the bottom layer is a data
feature-aware lossless compression layer, which includes an
Efficient Adaptive Offline Selector (EAOS) based on super-
vised learning, that can select the optimal lossless compression
algorithm from the compressor pool based on the features of
the lossy-compressed data. Through extensive experiments, we
demonstrate that HBC is far superior to the existing schemes
AMMMO, Chimp128 and LFZip in terms of compression
ratio, compression efficiency and compression error indicators.

VIII. ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China under No. 2021YFB2700500 and 2021YFB2700502,
the Open Fund of Key Laboratory of Civil Aviation Smart
Airport Theory and System, Civil Aviation University of China
under No. SATS202206, the Open Fund of Key Labora-
tory of Complex Electronic System Simulation under No.
614201002022205, the National Natural Science Foundation
of China under No. U20B2050 and 82004499.

REFERENCES

[1] T. Cai, Y. Ma, D. Niu, P. Gao, T. Lei, and J. Dai, “A new iot storage
system based on raw nvm,” in 2022 IEEE International Conference on
Big Data (Big Data), 2022, pp. 367–372.

[2] R. Vestergaard, D. E. Lucani, and Q. Zhang, “A randomly accessible
lossless compression scheme for time-series data,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications. IEEE, 2020,
pp. 2145–2154.

[3] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast lossless compression
of scientific floating-point data,” in Data Compression Conference
(DCC’06), 2006, pp. 133–142.

[4] J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane compression:
Transforming data for better compression in many-core architectures,”
in Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 329–340.

[5] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio
modeling and estimation across error bounds for lossy compression,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 7,
pp. 1621–1635, 2020.

[6] T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, “High-ratio lossy
compression: Exploring the autoencoder to compress scientific data,”
IEEE Transactions on Big Data, vol. 9, no. 1, pp. 22–36, 2023.

[7] P. Liakos, K. Papakonstantinopoulou, and Y. Kotidis, “Chimp: efficient
lossless floating point compression for time series databases,” Proceed-
ings of the VLDB Endowment, vol. 15, no. 11, pp. 3058–3070, 2022.

[8] J. D. A. Correa, A. S. R. Pinto, C. Montez, and E. M. Leao, “Swinging
door trending compression algorithm for iot environments,” in Anais
Estendidos do IX Simpósio Brasileiro de Engenharia de Sistemas
Computacionais. SBC, 2019, pp. 143–148.

[9] T. Bose, S. Bandyopadhyay, S. Kumar, A. Bhattacharyya, and A. Pal,
“Signal characteristics on sensor data compression in iot - an investi-
gation,” 2016 13th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), pp. 1–6, 2016.

[10] X. Yu, Y. Peng, F. Li, S. Wang, X. Shen, H. Mai, and Y. Xie, “Two-level
data compression using machine learning in time series database,” in
2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 2020, pp. 1333–1344.

[11] S. Chandak, K. Tatwawadi, C. Wen, L. Wang, J. A. Ojea, and
T. Weissman, “Lfzip: Lossy compression of multivariate floating-point
time series data via improved prediction,” in 2020 Data Compression
Conference (DCC). IEEE, 2020, pp. 342–351.

[12] H. P. Medeiros, M. C. Maciel, R. Demo Souza, and M. E. Pellenz,
“Lightweight data compression in wireless sensor networks using huff-
man coding,” International Journal of Distributed Sensor Networks,
vol. 10, no. 1, p. 672921, 2014.

[13] S. Akhter and M. Haque, “Ecg comptression using run length encoding,”
in 2010 18th European Signal Processing Conference. IEEE, 2010, pp.
1645–1649.

[14] N. Samteladze and K. Christensen, “Delta: Delta encoding for less
traffic for apps,” in 37th Annual IEEE Conference on Local Computer
Networks. IEEE, 2012, pp. 212–215.

[15] K. Sharma and K. Gupta, “Lossless data compression techniques and
their performance,” in 2017 International Conference on Computing,
Communication and Automation (ICCCA). IEEE, 2017, pp. 256–261.

[16] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
and K. Veeraraghavan, “Gorilla: A fast, scalable, in-memory time series
database,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp.
1816–1827, 2015.

[17] A. Bruno, F. M. Nardini, G. E. Pibiri, R. Trani, and R. Venturini, “Tsxor:
A simple time series compression algorithm,” in String Processing
and Information Retrieval: 28th International Symposium, SPIRE 2021,
Lille, France, October 4–6, 2021, Proceedings 28. Springer, 2021, pp.
217–223.

[18] D. Paul, Y. Peng, and F. Li, “Bursty event detection throughout histo-
ries,” in 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 2019, pp. 1370–1381.

[19] M. Burtscher and P. Ratanaworabhan, “Fpc: A high-speed compressor
for double-precision floating-point data,” IEEE transactions on comput-
ers, vol. 58, no. 1, pp. 18–31, 2008.

[20] D. Blalock, S. Madden, and J. Guttag, “Sprintz: Time series compression
for the internet of things,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 3, pp. 1–
23, 2018.

[21] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, “Deepzip: Lossless
data compression using recurrent neural networks,” arXiv preprint
arXiv:1811.08162, 2018.

[22] G. E. Williams, “Critical aperture convergence filtering and systems and
methods thereof,” Jul. 11 2006, uS Patent 7,076,402.

[23] S. K. Jensen, T. B. Pedersen, and C. Thomsen, “Modelardb: Modular
model-based time series management with spark and cassandra,” Pro-
ceedings of the VLDB Endowment, vol. 11, no. 11, pp. 1688–1701, 2018.

[24] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp.
1129–1139.

[25] K. Zhao, S. Di, D. Perez, X. Liang, Z. Chen, and F. Cappello, “Mdz:
An efficient error-bounded lossy compressor for molecular dynamics,” in
2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022, pp. 27–40.

[26] J. Ford and J. Ford, “Lossless simd compression of lidar range and
attribute scan sequences,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 9155–9161.

[27] V. N. Anh and A. Moffat, “Index compression using 64-bit words,”
Softw. Pract. Exper., vol. 40, no. 2, p. 131–147, feb 2010.

[28] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson, “An experimental
study of bitmap compression vs. inverted list compression,” in Proceed-
ings of the 2017 ACM International Conference on Management of Data,
ser. SIGMOD ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 993–1008.

[29] D. Dua and C. Graff, “Uci machine learning repository,” 2017.

