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Abstract—Informed path planning is a type of algorithm
that uses problem-specific knowledge, expressed as heuristics, to
efficiently discover an optimal path between a start and goal
state. The efficiency of an informed algorithm is contingent
upon how quickly the planner can find the initial solution and
the associated overhead involved in collision detection. Existing
informed planners do not fully exploit the information contained
in historical collision detection results, resulting in additional
unnecessary collision detections. Furthermore, they optimize
paths through rewiring before discovering an initial solution. This
approach not only hampers the planner’s space exploration, but
also generates a superfluous amount of unproductive overhead.
In this paper, an Obstacle-Sensitive and Initial-Solution-first path
planning algorithm (OSIS) is proposed. OSIS leverages historical
collision detection results to construct an asymptotically accurate
distribution of obstacles in space. Based on this distribution, OSIS
employs a reusable, inadmissible yet more accurate heuristic
that applies to the entire problem domain. Additionally, an
initial-solution-first path optimization strategy is proposed to
eliminate unnecessary path optimization. It ensures that OSIS
prioritizes exploring uncharted spaces, leading to faster initial
solution discovery. Experiments have demonstrated that OSIS
outperforms existing algorithms in navigating around obstacles,
and achieving convergence in solution cost.

Index Terms—sampling-based path planning, optimal path
planning, informed search, collision detection, obstacle avoidance

I. INTRODUCTION

A path planning algorithm is a computational method de-
signed to determine a sequence of valid states from an initial
start location to a desired goal within a defined state space,
while avoiding any obstructions present within the space.
Path planning algorithms have been applied in various fields
such as robotics [1], unmanned aerial vehicles (UAVs) [2],
autonomous vehicles [3], and video games [4]. The objective
of the planner is to promptly find an initial solution and
progressively converge it towards an optimal solution.

Existing algorithms can be classified into two primary
categories: search-based path planning and sampling-based
path planning. Search-based path planning algorithms, such as
Dijkstra’s algorithm [5] and A* [6], utilize dynamic program-
ming techniques [7] to find solutions in discrete state spaces.
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Fig. 1. Illustration of the search trees constructed by BIT*, ABIT*, AIT*,
EIT*, and OSIS when optimizing path length. demonstrating their ability to
detect obstacles in a scene and find a bypass path. Obstacles in the space
are represented in gray, while black dots represent the sampling states. The
blue square represents start and the red square represents goal. The green
lines represent solutions found by the planner. The solid blue lines indicate
the edges added to the tree, and the dotted light blue lines in (c) and (d)
indicate the edges added to the reverse tree of AIT* and EIT*. The red line
represent the edge that the planner tried to add to the tree, but failed because
it overlapped with the obstacle and did not pass the collision detection. The
yellow lines in (c) represent edges that are added to the reverse tree and
then removed from it after LPA* updates the reverse tree due to a collision
detected. Note that the red collision edge was also added to the reverse tree and
removed after a collision was detected. (e) and (f) are both the planning results
of OSIS. The difference is that (f) preprocesses the scene before execution to
obtain the distribution of obstacles in the space in advance, while (e) gradually
collects the results of collision detection in the planning process to predict the
distribution of obstacles in the space. The green dots in (e) and (f) represent
the sampling state in which OSIS believes that it is likely to collide with
obstacles, so collision detection is not carried out and the sampling state is
directly discarded.

The quality of the solution obtained by search-based path
planning algorithms relies on the level of granularity in
space discretization. Finer granularity discretization generally
yields better solution quality, but it also introduces increased
computational overhead [8]. Especially in high-dimensional
state spaces, the computational overhead of search-based path



planning algorithms grows exponentially with the number of
states. This phenomenon is commonly referred to as the curse
of dimensionality [9].

To overcome the limitations of the search-based algorithm in
continuous space, the sampling-based path planning algorithm
has been developed. It’s basic idea is to randomly sample the
space, where each sample is regarded as a state, and the set
of all valid states (that is, they do not collide with obstacles)
can be used to approximately represent the problem space, the
planner then searches the path on this approximation.

The RRT [10] algorithm is one of the most classical
sampling-based path planning algorithms, and RRT* [11] is
an asymptotically optimal improvement of it.

Informed RRT* [12] introduces the concept of informed
search. Informed search techniques empower planners to lever-
age existing solutions to determine the optimal solution’s
potential range. By doing so, the sampling and search space
can be reduced, expediting solution convergence. As a result,
informed planning algorithms typically exhibit improved per-
formance.

Modern algorithms for informed path planning include
Batch Informed Trees (BIT*) [13], Advanced BIT* (ABIT*)
[14], Adaptively Informed Trees (AIT*) [15], and Effort
Informed Trees (EIT*) [16].

In path planning algorithms, collision detection overhead is
often considerable [17], [18], and planners should endeavor to
minimize the frequency of collision detections. Nevertheless,
existing informed algorithms do not fully capitalize on col-
lision information during the search process, resulting in an
excessive number of redundant collision detections.

Meanwhile, the majority of existing informed algorithms
focus on path optimization through rewiring before locating
the initial solution. This approach not only diminishes the
speed of discovering the initial solution but also squanders
computational resources on irrelevant paths. Furthermore, it
significantly heightens the risk of the search becoming trapped
in a local optimum for an extended duration.

In response to the limitations of existing informed planning
algorithms, this paper introduces the Obstacle-Sensitive and
Initial-Solution-first (OSIS) path planning algorithm. OSIS
leverages collision detection results from previous search
processes to estimate the distribution of obstacles in the
environment. This information guides OSIS in maneuvering
around obstacles and minimizing unnecessary collision detec-
tions, thereby enhancing search efficiency. Furthermore, OSIS
prioritizes the discovery of the initial solution as its primary
objective. To achieve this, OSIS defers rewiring processes
that don’t directly contribute to finding the initial solution
until after the initial solution is found. This strategic approach
allows OSIS to swiftly locate the initial solution and disregard
extraneous paths.

Fig. 1 illustrates the approach taken by OSIS and existing
informed path planning algorithms to navigate around obsta-
cles in space in search of solutions. As depicted in Fig. 1, OSIS

detects noticeably fewer collisions compared to other informed
path planning algorithms. The experimental results indicate
that OSIS excels in identifying and maneuvering around
obstacles, resulting in expedited initial solution searches and
faster convergence.

The contribution of this paper is as follows:
• An Obstacle-Sensitive and Initial-Solution-first informed

path planning algorithm (OSIS) is proposed to cope with
the disadvantages of existing algorithms.

• OSIS estimates the distribution of obstacles in space by
analyzing historical collision detection data. The planner
then employs this information to navigate the environ-
ment efficiently, evading obstacles when possible and
minimizing the incidence of collisions.

• OSIS optimizes the existing rewiring strategy to prioritize
exploration of uncharted regions within the space. It
enables the planner to promptly navigate away from
potential local optima, thus accelerating the search for
the initial solution.

The remainder of this paper is organized as follows: Section
II provides an overview of the related work in the field of
path planning algorithms. Section III presents the foundational
knowledge relevant to informed planning algorithms, along
with the mathematical model of the planning problem. Section
IV details the implementation of OSIS. The experimental re-
sults are showcased in Section V. Finally, Section VI concludes
this paper, summarizing the key findings.

II. RELATED WORK

A. Classical sampling-based path planning algorithms

The RRT [10] algorithm is considered to be one of the
pioneers of sampling-based path planning. RRT begins by
initiating a tree from the starting point. It then randomly
samples one state in the planning space at each iterations and
connects it to the nearest node in the tree, as long as there are
no obstacles between them.

During each iteration of RRT, there’s a probability of at-
tempting to directly link the goal to the nearest node in the tree.
If the resulting edge doesn’t collide with obstacles, a path from
start to the goal is found. As RRT samples uniformly at each
iteration, it progressively explores the entire planning space
with an increasing number of iterations, ultimately leading
to the discovery of a solution. Since the growth of RRT
is random and disordered, RRT isn’t guaranteed to find the
optimal solution.

RRT-Connect [19] is an improvement of RRT. RRT-Connect
grows a tree at both start and goal, and grows in the direction
of each other, finding a path from start to goal when the two
trees are connected together. RRT-Connect has a significant
performance improvement over RRT, but RRT-Connect is
still not asymptotically optimal, but its proposed strategy of
bidirectional search is followed by many subsequent algo-
rithms, such as AIT* [15] and EIT* [16], and there are some



algorithms that implement asymptotically optimal versions of
RRT-Connect [20]–[23].

RRT* [11] introduces a rewiring technique to address the
limitations of RRT in achieving optimal solutions. Through the
implementation of this rewiring strategy, RRT* consistently
updates the cost-to-come for nodes within the tree. This
dynamic cost update process leads to a gradual convergence
of the solution’s cost as the number of iterations increases.
Consequently, RRT* exhibits the property of being asymptot-
ically optimal. However, the search strategy of RRT* remains
random, which could result in growth of the tree in directions
far from the goal.

RRT and RRT* utilize random geometric graph (RGG)
[24] theory to approximate the planning space by generating
random samples in the space, which form graphs with implicit
edges that are used for finding solutions. Since RRT and RRT*
generate only one sample in each iteration, the construction
and search of the RGG graph are performed simultaneously,
resulting in a randomized and unordered anytime search. Fast
marching trees (FMT*) [25] also employs RGG theory by
generating a fixed number of samples at a time to construct an
RGG, which is then searched for solutions. Unlike RRT and
RRT*, FMT*’s construction and search are not simultaneous,
resulting in an ordered but non-anytime search, which means
that it can’t return a solution at any point during the search.

B. Heuristic-based path planning algorithms

Sampling-based planning algorithms can use heuristics to
guide the planner’s search and improve the planner’s perfor-
mance, such as Sampling-based A* (SBA*) [26]. The idea of
using heuristics is derived from A* [6] . During the search
process in A* algorithm, heuristics are utilized to evaluate the
value of each state. The states with lower heuristic cost are
more likely to contribute to the improvement of the solution.
Heuristics enhance the search efficiency by utilizing problem-
specific information, often in the form of a heuristic function
that estimates the cost of connecting any pair of vertices in
the graph. Those states that have lower heuristic cost-to-go
and cost-to-come are generally more likely to optimize the
solution.

A heuristic is considered admissible if it never overestimates
the true cost. Conversely, an inadmissible heuristic is one that
may overestimate the true cost. A suitable heuristic should be
both computationally efficient and as accurate as possible in
estimating the true cost. Commonly used heuristics in existing
planning algorithms include Euclidean or Manhattan distance,
and some planners can update the heuristic estimate after
detecting a collision to improve its accuracy [15], [16].

Heuristically-Guided RRT (hRRT) [27] is a heuristic-based
variation of RRT, which employs heuristics to direct the
growth of the tree. While this algorithms improve RRT’s per-
formance, but it lack the ability to constrain the search space
based on existing solutions. FMT* does not use heuristics,
and the Motion Planning using Lower Bounds (MPLB) [28]

is an anytime adaption of FMT* that incorporates heuristics.
MPLB utilizes Dijkstra’s algorithm to generate an admissible
lower bounds heuristic that guides the search without collision
detection. However, once a collision is detected, the heuristic
is not updated in MPLB.

C. Informed path planning algorithms

Gammell et al. introduced Informed RRT* [12] as an ex-
tension of RRT*, which led to the development of the concept
of informed planning. In informed planning, the optimal path
length can be bounded by an ellipse (ellipsoid) defined by
the length of the current path and the Euclidean distance
between start and goal. This approach allows the planner to
narrow down the range of optimal solutions and eliminate
states and edges that cannot improve the solution, resulting
in improved search efficiency. However, Informed RRT* does
not use heuristics to guide the search.

Depending on the sampling pattern, the planner can be either
a single-sampling planner, which generates one sample at a
time, or a batch-sampling planner, which generates a batch of
samples at once. The batch sampling planning algorithm can
build an approximation of the planning space faster, so as to
find the initial solution faster. FMT* can also be viewed as a
batch sampling algorithm, but FMT* only generates a batch
of samples in a planning process. The BIT* [13] can generate
samples in multiple batches, so that BIT* can dynamically
build more and more accurate RGG approximation.

ABIT* improves the performance of BIT* by introducing
advanced graph search techniques. ABIT* incorporates two
factors, namely the inflation factor (εinfl) and the truncation
factor (εtrunc), to guide its search. The εinfl factor inflates
the heuristic cost-to-go of edges, prioritizing the exploration
of edges with lower heuristic cost-to-go, so edges closer to
goal will be added to the tree first, which greatly improves
the efficiency of the search. On the other hand, the εtrunc
factor truncates the search, enabling the planner to initiate
the subsequent round of more precise search at the earliest
opportunity.

However, the heuristics of BIT* and ABIT* do not update
when a collision is detected, which makes the accuracy of their
heuristics plummet in some cases. Fig. 1 (a) and (b) illustrate
a scenario where BIT* and ABIT* exhibit poor performance.
Additionally, BIT* and ABIT* adopt a ”greedy” strategy to
select the edge that is most likely to improve the solution in
the current situation for addition to the tree, which makes them
susceptible to getting trapped in a local optimum.

AIT* leverages bidirectional search to compute a more
precise heuristic. It constructs a forward tree rooted at the
start and a reverse tree rooted at the goal, with the latter
ignoring collisions with obstacles during its growth. The cost-
to-go heuristic of a state in the forward tree is equal to its cost-
to-come in the reverse tree. At each iteration, AIT* tries to add
the edge in the reverse tree that connects to the forward tree
and is most likely to improve the solution to the forward tree,



and if this edge collides with an obstacle, AIT* updates the
reverse tree using LPA* [29] . LPA* is an enhancement of the
A* algorithm that is designed to handle dynamic scenes, where
the positions of obstacles may dynamically change. Unlike A*,
LPA* doesn’t require a complete re-search after detecting a
change in the environment, instead, it updates only the relevant
local path to quickly recompute the optimal path.

However, the reverse tree of AIT* does not take into account
the collision with obstacles during its growth process, leading
to frequent updates of the reverse tree in complex scenarios,
as depicted in Fig. 1 (c). As a result, while AIT* can compute
more accurate heuristics, the cost of achieving such accuracy
may be substantial.

EIT* is an extension of AIT* that addresses its limitations
through the use of effort heuristics and sparse collision de-
tection. The effort heuristic is an inadmissible heuristic that
estimates the computational effort needed to verify a path
from a state to a goal, based on the path length and collision
detection resolution. By incorporating effort heuristics and
sparse collision detection, EIT* alleviates the problem of
frequent updates of the reverse tree that may result from AIT*
not considering collisions at all. The performance of EIT* has
shown a significant improvement compared to AIT*. However,
as illustrated in Fig. 1 (d), EIT* does not effectively address
the frequent ”bumping into the wall” issue.

Although AIT* and EIT* can compute more accurate
heuristics, the computational overhead of such heuristics may
be huge in some complex scenarios. In this case, these
algorithms actually transfer the overhead of the forward search
to the reverse search, but the overall search overhead is not
significantly reduced.

Existing informed algorithms do not effectively use past
collision data for guiding the search. Moreover, these algo-
rithms apply the rewiring strategy for path optimization before
locating the initial solution, which not only hinders initial
solution discovery but also leads to unnecessary overhead
by optimizing numerous irrelevant paths. This can potentially
prolong the process and trap the planner in local optima.

Based on these problems existing in existing informed
programming algorithms, OSIS, a novel informed planning
algorithm that can efficiently identify and bypass obstacles in
space, find an initial solution, and converge to it, is proposed
in this paper.

III. PROBLEM MODELING AND PRELIMINARIES

A. Problem modeling

The definition of the path planning problem in this paper is
similar to that in [11]. Let X ⊆ Rn represent the state space,
Xobs ⊂ X represent the space occupied by obstacles, and
Xfree ⊂ X\Xobs represent the free space without obstacles.
Let xstart ∈ Xfree be the start state and Xgoal ⊂ Xfree

be the set of goal states. Assume σ : [0, 1] 7→ Xfree is a
continuous function that possesses finite total variation, which

is equivalent to a valid path. The set of all valid paths is
denoted by Σ. Assuming an optimization objective, the cost
function s : Σ 7→ [0,∞) is defined to map each path to a
non-negative real number.

The task of the optimal path planning problem is to either
find the path with minimum cost, σ∗ ∈ Σ, from the xstart to
any xgoal ∈ Xgoal, or report failure if there is no such path.
The cost of the optimal path is denoted s∗. σ∗ is defines as:

σ∗ := argmin
σ∈Σ

{s(σ)|σ(0) = xstart, σ(1) ∈ Xgoal,

∀t ∈ [0, 1], σ(t) ∈ Xfree}
(1)

B. Preliminaries

Informed planning algorithms, such as BIT* [13] , generate
an increasingly dense RGG [24] by batch sampling. The RGG
is composed of a set of states, Xsamples ⊂ X , that are
uniformly generated at random, and these states constitute
the vertexs in the graph. The edges between the vertexs
are implicit. After finding a solution, the informed planning
algorithm can limit the range of the optimal solution to an
ellipse (or ellipsoid) determined by the solution. The set of
states within this ellipse (or ellipsoid) is known as the informed
set. The informed planning algorithm searches for a solution
by growing a tree rooted at xstart on this edge-implicit graph.
To grow this tree, every time a new vertex is added to the
tree, this new vertex is expanded (the root node xstart is
expanded at the beginning of the algorithm). When expanding
a vertex, the planner considers all the implicit edges between
the neighbors of the expanded vertex and the expanded vertex
in RGG, and selects the implicit edge that is most likely
to improve the solution based on the heuristic. If the child
state of this implicit edge is already in the tree, the edge is
considered as a rewiring edge. There are two main methods for
determining whether a vertex is a neighbor: k-nearest [30] and
r-disc [31]. The k-nearest policy defines a state’s neighbors as
the k nearest states to that state, where k is defined as:

k(q) = ηe

(
1 +

1

d

)
log(q) (2)

The r-disc policy defines the neighbors of a state as all the
states within a radius of r around it, where r is defined as:

r(q) = 2η

(
1 +

1

d

) 1
d
(
λ(Xf̂ )

ζd

) 1
d
(
log(q)

q

) 1
d

(3)

In Equations (2) and (3), q is the number of states in the
informed set, d is the dimension of the planning space, η ≥ 1
is the tuning parameter, λ(Xf̂ ) is the Lebesgue measures of
the informed set and ζd is an d-dimensional unit ball.

After obtaining the implicit edges between the expanded
state and its neighbors, the planner needs to evaluate the
potential of these implicit edges to improve the solution, in
order to select the most promising edges to add to the tree.
The informed planner utilizes a priority queue, or min-heap, of
lexicographically ordered keywords based on heuristic costs to



prioritize pending implicit edges. The planner then takes the
best edge from the priority queue and performs a series of
checks (e.g., collision detection) on it to decide whether to
add it to the tree.

IV. OSIS

A. Basic Idea

OSIS constructs an obstacle density approximation by col-
lecting statistics on the results of collision detections and
uses this information to calculate an inadmissible, but more
effective heuristic. This heuristic prioritizes exploration of
the free space and avoids ineffective exploration, resulting in
improved performance. Moreover, OSIS improves the rewiring
strategy to avoid inefficient path optimization prior to finding
the initial solution. This approach enables the planner to
focus on searching for the initial solution. By employing
these strategy, OSIS effectively addresses the challenges faced
by existing informed planners, resulting in faster and more
efficient discovery and convergence of the initial solution.

The obstacle sensitivity of OSIS is based on the fact that
if collisions are frequently detected in a certain region of
the planning space, it means that this region is likely to be
occupied by obstacles, and the planner should choose to avoid
this region as much as possible or reduce the priority of
exploration in this region. In order to measure the proportion
of detected collisions occurring in a region, OSIS partitions the
planning space into multiple subspaces based on user-defined
parameters. Each subspace is associated with an obstacle
density, denoted by ρ, where ρ ∈ [0, 1], which represents
the fraction of the space occupied by obstacles within that
subspace. The density of obstacles in the subspace will be
calculated dynamically according to the results of collision
detection during the execution of the algorithm.

Fig. 2. The order of edges processed by OSIS.

OSIS achieves initial-solution-first by delaying rewiring.
Before finding the initial solution, OSIS records all potential
rewiring edges encountered and does not process them until
the initial solution is found.

OSIS mainly uses two priority queues, sorted by heuristic
cost, to delay processing potential colliding edges (PCE) and
potential rewiring edges (PRE) that may not improve the
solution: the PCEs queue QC and PREs queue QR. Since
a PCE is likely to collide with an obstacle, it has a low
probability of improving the solution. If an edge is both a PCE
and a PRE, it will be first treated as a PCE. Furthermore, the
normal edges queue Q of OSIS stores edges that are neither

PCEs nor PREs. In general, edges in Q will be preferentially
processed compared to edges in QC and QR.

Fig. 2 depicts the sequence in which OSIS processes edges.
PREs are not processed until an initial solution is found, and
OSIS starts processing PREs immediately after finding an
initial solution. In each batch, OSIS will give priority to the
normal edges, while the PCEs that may not be able to optimize
the solution will be processed last. If all edges in a batch can
not significantly improve the current solution, then processing
the delayed PCE may not yield much benefit either. In such
situations, one can consider completely discarding PCEs or
discarding them before finding an initial solution to speed up
the planner to start the next batch for a more refined search.
After finding an initial solution, OSIS will no longer delay
PREs, but it will still delay PCEs.

The utilization of PCEs queue and PREs queue enables
OSIS to prioritize edges that have a higher probability of
improving the solution, enables OSIS to find the initial so-
lution faster, and thereby enhancing the search efficiency and
convergence speed of the planner.

OSIS mainly has three key components: getting the best
edge, trying to add the best edge to the tree, exhausting the
current approximation, and they will be described in detail in
sections IV-C, IV-D, and IV-E, respectively.

Algorithm 1 OSIS(xstart, Xgoal,m)

1: V ← {xstart}; E ← ∅; T ← (V,E);
2: Xsamples ← {Xgoal};
3: Vclosed ← ∅; Vinconsistent ← ∅;
4: QR ← ∅; QC ← ∅;
5: Q← Expand({xstart});
6: εinfl ←∞; εtrunc ← 1;
7: is search done← False;
8: is final search on batch← False;
9: has exact solution ← False;

10: repeat
11: if is search done or Q ≡ ∅ then
12: if is final search on batch or
13: not has exact solution then
14: ProcessPotentialEdges(QC);
15: Prune();
16: Vclosed ← ∅;
17: Xsamples

+←− Sample(m);
18: Q← Expand({xstart});
19: εtrunc ← UpdateTruncationFactor();
20: is final search on batch← False;
21: else
22: εinfl ← UpdateInflationFactor();

23: Q
+←− Expand(Vinconsistent);

24: Vinconsistent ← ∅;
25: is final search on batch← True;

26: is search done← False;
27: else
28: (xp, xc)← argmin

(xi,xj)∈Q

{
keyOSIS(xi, xj)

}
;

29: if not has exact solution and xc ∈ V then
30: QR

+←− (xp, xc);
31: else
32: is search done← TryAddBestEdge((xp, xc));

33: until stop



B. Initialization

Initially, there are no edges in the tree, but only xstart,
which represents the root node of the tree (line 1 in Alg. 1).
The sample set Xsamples is initialized with Xgoal (line 2 in
Alg. 1), where Xgoal ⊂ X denotes goal states.

OSIS then takes candidate edges that can be added to the
tree by expanding xstart. Alg. 2 shows how OSIS expands
the set of states to be extended: Xe. For each state xp in
Xe, OSIS first checks whether it is possible to optimize
the solution through xp (line 3), where f̂(x) represents an
admissible estimate of the cost to reach the goal from the
start, passing through state x, defined as f̂(x) := ĝ(x)+ ĥ(x);
ĝ(x) represents the heuristic cost-to-come of state x, serving
as an admissible estimate or lower bound on the cost of
reaching state x from the start; ĥ(x) represents the heuristic
cost-to-go of the state x, providing an admissible estimate
or lower bound on the cost of reaching the goal from state
x. If it is possible to optimize the solution through xp,
OSIS obtains its neighbors based on the k-nearest or r-disc
strategy (line 4). For a neighbor xc of xp, if the solution
may be optimized by edge (xp, xc) (line 5-6), where f̂((x, y))
represents the heuristic cost of reaching the goal from the
start, while passing through the edge (x, y), which defined
as f̂((x, y)) := ĝ(x) + ĉ(x, y) + ĥ(x); ĉ(x, y) represents the
heuristic cost of the edge (x, y), providing an addmisable
estimate of the cost associated with traversing from state x
to state y. Finally, OSIS determines whether it is a PCE, if
so, it is added to the PCE queue QC , otherwise, it is added
to Eout, which represents as the set of candidate edges. (line
7-10)

Algorithm 2 Expand(Xe)

1: Eout ← ∅;
2: for all xp in Xe do
3: if f̂(xp) ≤ min

x∈Xgoal

{gT (x)} then

4: for all xc in neighbors(xp) do
5: if f̂((xp, xc)) ≤ min

x∈Xgoal

{gT (x)} then

6: if ĝ(xp) + ĉ(xp, xc) ≤ gT (xc) then
7: if IsPCE((xp, xc)) then
8: QC

+←− (xp, xc);
9: else

10: Eout
+←− (xp, xc);

11: return Eout

OSIS, similar to ABIT*, incorporates advanced graph search
techniques to enhance search efficiency. Formally, the inflation
factor, εinfl ≥ 1, is initialized to infinity (line 6 in Alg. 1),
and it is initialized to a very large number during the actual
execution of the algorithm.

The boolean variable is search done indicates whether a
search round is complete, is final search on batch indicates
whether a batch is complete.

C. Get The Best Edge

In this step, OSIS obtains the edge from the edge queue that
is most likely to improve the solution. If the best edge is PRE
and the initial solution has not been found, then PRE will be
delayed; otherwise, OSIS will try to add it to the tree.

If the search under the current approximation is not finished,
OSIS takes an edge (xp, xc) from the edge queue Q that is
most likely to improve the solution (line 28 in Alg. 1). OSIS
sorts edges lexicographically in terms of sorting keys, where
the edge with the smallest key value is treated as the best edge.
For an edge (xp, xc), the sort key is defined as Equation (4):

keyOSIS(xp, xc) =

(
ρ(xp, xc)

(
gT (xp) + ĉ(xp, xc) + εinflĥ(xc)

)
,

g(xp) + ĉ(xp, xc),

g(xp)

) (4)

where gT (x) represents the cost-to-come of state x in a given
tree T , which denotes the current cost of coming from the start
to state x; ρ(xp, xc) represents the collision factor of edge
(xp, xc), which reflects the possibility of collision between
the edge and the obstacle; the higher the value of the collision
factor, the more likely the edge is to collide with the obstacle.

Suppose that for a problem domain space X , OSIS partitions
it into n mutually disjoint subspaces, i.e.

⋃n
i=1 Xi = X , and

Xi ∩Xj = ∅, i, j ∈ [1, n], i ̸= j. For an edge (x, y), assuming
that its trajectory through space passes through m subspaces,
its collision factor is calculated as follows:

ρ(x, y) =

m∏
i=1

(
1 +

ldai

λ(Xai)

)αρai

(5)

where lai
denotes the length of the edge (x, y) in the i-th

subspace that it passes through, Xai denotes the Lebesgue
measure of the i-th subspace that (x, y) passes through, ρai ∈
[0, 1] denotes the obstacle density of the i-th subspace that
(x, y) passes through, d denotes the dimension of the planning
space, α denotes the obstacle sensitivity parameter, which is
used to adjust the sensitivity of OSIS to obstacles. By default,
α is set to 1.

The implication of Equation (5) is that if an edge has a
longer trajectory in space or passes through a subspace with
a high obstacle density, it is highly likely to collide with
obstacles. For the subspace Xai

that edge (x, y) traverses,
if the region traversed by (x, y) in Xai is sufficiently small
or the obstacle density ρai tends to 0, the collision factor of
(x, y) in this space tends to 1. OSIS computes the collision
factor of (x, y) by multiplying the collision factors of each
traversed subspace. When (x, y) passes through an empty area,
the collision factor tends to 1, which has minimal impact on
the heuristic cost of (x, y). Conversely, when (x, y) passes
through a ”crowded” area with frequent collisions, the collision
factor of (x, y) becomes significantly larger than 1, inflating
its heuristic cost and reducing its processing priority.



D. Try to add the best edge to the tree

In this step, OSIS verifies the best edge taken from the edge
queue, and if the best edge can indeed optimize the solution
and has no collision with obstacles, OSIS adds it to the tree
and updates the solution.

After identifying the best edge (xp, xc) that has the highest
potential to improve the solution, OSIS proceeds to add it
to the tree. However, before doing so, OSIS verifies whether
xc is already present in the tree T . If xc is indeed in the
tree, (xp, xc) is considered a PRE. In the case where an
initial solution has not been found yet, OSIS postpones the
processing of this edge. It is then placed in the queue of PREs,
and the next iteration begins (lines 29-30 in Alg.1).

If the best edge does not qualify as a PRE or an initial
solution has already been found, the TryAddBestEdge func-
tion is invoked to attempt adding it to the tree. This function
returns a boolean value indicating whether the best edge is
impossible to optimize the solution. If the TryAddBestEdge
function returns True, it signifies that optimizing the solution
is unfeasible even for the best edges, indicating even lower
potential for optimizing the solution for the remaining edges.

The TryAddBestEdge function first checks if the edge
(xp, xc) is already present in the tree. If (xp, xc) is found
in the tree and xc has not been expanded during the current
search, OSIS includes xc in Vclosed, signifying that xc has
been expanded during the current approximation, then OSIS
expands xc, and the function returns False (lines 1-7 in Alg.
3). If xc has been expanded in the current search, it is added
to the set Vinconsistent as an inconsistent state and will not be
expanded further.

Then OSIS checks whether the edge (xp, xc) is likely to
improve the solution (lines 8-9 in Alg.3). In doing so, the
truncation factor εtrunc inflates the cost of the solution that
can be obtained by (xp, xc) under the current approximation.
This requires that the best edge (xp, xc) must significantly
improve the solution for the best edge to be considered to
improve the solution, otherwise TryAddBestEdge returns
True, indicating that none of the remaining edges can improve
the solution.

When the initial solution has not been found yet, the value
of min

x∈Xgoal

{gT (x)} is infinite, then the inequality of line 8

and line 11 in Alg. 3 will always be true, and then all the
best edges (xp, xc) are regarded as can optimize the solution.
This approach leads to two issues: (i) All PREs are regarded
as can optimize the solution, however, since no new state is
added to the tree, it is not possible to update the solution
even by adding it to the tree. (ii) Any rewiring edge will be
treated as useful, even if it is not on the optimal path. Due
to these reasons, rewiring in the absence of an initial solution
does not provide any apparent benefits for finding the initial
solution. Conversely, it may result in an unnecessary search.
Consequently, OSIS defers rewiring until an initial solution is
found.

Algorithm 3 TryAddBestEdge((xp, xc))

1: if (xp, xc) ∈ E then
2: if xc ∈ Vclosed then
3: Vinconsistent

+←− xc;
4: else
5: Q

+←− Expand({xc});
6: Vclosed

+←− xc;

7: return False;

8: if εtrunc(gT (xp) + ĉ(xp, xc) + ĥ(xc)) ≤ min
x∈Xgoal

{gT (x)} then

9: if gt(v) + ĉ(xp, xc) < gT (xc) then
10: if CheckEdge((xp, xc)) then
11: if gT (xp) + c(xp, xc) + ĥ(xc) < min

x∈Xgoal

{gT (x)} then

12: if gT (xp) + c(xp, xc) < gT (xc) then
13: if xc ∈ V then
14: E

−←−
{
(xprev , xc) ∈ E

}
;

15: else
16: Xsamples

−←− xc;

17: V
+←− xc;

18: E
+←− (xp, xc)

19: if xc ∈ Vclosed then
20: Vinconsistent

+←− xc;
21: else
22: Q

+←− Expand({xc});
23: Vclosed

+←− xc;

24: if not has exact solution and
25: xc ∈ Xgoal then
26: has exact solution← True
27: ProcessPotentialEdges(QR);

28: return False;

29: return True;

Algorithm 4 ProcessPotentialEdges(Qp)

1: is processing done← False
2: while Qp ̸= ∅ and not is processing done do
3: (xp, xc)← argmin

(xi,xj)∈Qp

{
keyOSIS(xi, xj)

}
;

4: is processing done← TryAddBestEdge((xp, xc));

If a heuristic cost based on edge (xp, xc) indicates that it
may be able to improve the solution, it is collision detected
to compute its true cost and verify whether it is indeed likely
to improve the solution (lines 10-12 in Alg. 3), where c(x, y)
represents the true cost of the edge (xp, xc).

OSIS dynamically updates the obstacle density based on the
collision detection results. When a collision is detected for a
state, the obstacle density of the corresponding subspace is
increased, indicating a higher proportion of obstacles. Con-
versely, if no collision is detected, the obstacle density of the
subspace is decreased, reflecting a lower obstacle presence.

The best edge (xp, xc) is added to the tree if it doesn’t
collide with the obstacle and can improve the solution. If xc

is already in the tree, the edge connecting xc to its previous
parent xprev is also removed (lines 13-18 in Alg. 3). When
(xp, xc) is added to the tree, xc is expanded if it hasn’t been
expanded already in the current search. An initial solution is
found when xgoal is first added to the tree as xc. At this point,
OSIS immediately starts processing previously delayed PREs,



adding those that can improve the solution to the tree (lines
24-27 in Alg. 3). If the best edge fails to improve the solution
after further inspection, TryAddBestEdge returns False and
proceeds to try the next edge.

E. Exhaust the current approximation

If the best edge is impossible to improve the solution, or the
edge queue is already empty, OSIS will start the next round
of search or approximation (line 11 in Alg.1). If the current
approximation is not exhausted, OSIS updates the inflation
factor, expands the set of inconsistent states, and starts the
final search under the current approximation (lines 22-25 in
Alg. 1).

If the current approximation is exhausted or an initial
solution has not been found (lines 12-13 and Alg. 1), OSIS
proceeds to initiate the next round of approximation. Prior
to that, OSIS handles the PCEs that were postponed during
the current approximation phase (line 14 in Alg. 1; Alg. 4).
Subsequently, the graph is pruned to eliminate redundant states
and edges (line 15 in Alg. 1), The definition of Prune is
similar to that of the research [13]; A new batch of samples
is generated and xstart is expanded again (lines 17-18 in Alg.
1).

During the sampling process, it is necessary to check
whether the generated samples collide with obstacles. OSIS
estimates the probability that a sample is valid based on the
obstacle density, If the subspace where the sample belongs
to has a high density of obstacles, OSIS can directly discard
the sample without collision detection. Alternatively, OSIS can
utilize a priority queue to order the samples to be detected,
delaying the detection of potential colliding states. Similar to
the validation of edges, OSIS also updates the obstacle density
based on the result of sample collision detection.

Finally, the truncation factor is updated to ensure a more
precise and efficient search in the subsequent round (line 19
in Alg. 1). The strategy for updating the inflation and truncation
factors is similar to that of the study [14].

V. EXPERIMENTAL RESULTS

To evaluate the performance of OSIS, we compare it with
the Open Motion Planning Library (OMPL) [32] versions of
BIT*, ABIT*, AIT*, and EIT*. The performance are measured
with OMPL v1.6.0 on a laptop with 16GB of RAM and
an Intel i7-8550U processor running Ubuntu 18.04. For all
planners, the RGG tuning parameter η is set to 1.1, 100
samples are generated in each batch, k-nearest strategy is used
to obtain neighbors, Euclidean distance is used as the default
heuristic, and the optimization objective is to minimize the
path length. For ABIT* and OSIS, the initial values of the
inflation factor εinfl and truncation factor εtrunc are 106 and
1, respectively. In OSIS, the obstacle sensitivity α is set to
the default value of 1. When considering any edge (x, y), if
its collision factor ρ(x, y) exceeds the threshold of 1.3, it is
identified as a PCE.

(a) BIT* (b) ABIT* (c) AIT*

(d) EIT* (e) OSIS (f) OSIS(Preprocessed)

Fig. 3. The growth of the tree in Problem 2 when different planners find the
initial solution. The meanings represented by the edges and points of various
colors are the same as in Fig. 1.

(a) Median path cost of Problem 1 (b) Success rate of Problem 1

(c) Median path cost of Problem 2 (d) Success rate of Problem 2

Fig. 4. The experimental results of Problem 1 and Problem 2.

The experiments are mainly conducted under two simulation
scenarios, and Fig. 1 (Problem 1) and 3 (Problem 2) depicts
the planning problem for these two scenarios. Problem 1
is a simple scenario where the start is semi-surrounded by
walls and the planner needs to bypass them to find the
goal behind the walls. Problem 2 portrays a more intricate
scenario characterized by numerous obstacles and the presence
of local optimal paths. In this case, the planner must effectively
circumvent the obstacles and swiftly escape from local optima.

In this paper, OSIS adopts a coarse-grained gridding ap-
proach to partition the planning space, where each subspace
is represented as a square grid. Specifically, in Problem 1, the
grid has a side length of 5, while in Problem 2, the grid is
defined with a side length of 10. The runtime of all planners is
limited to 1 second and 2 seconds in Problem 1 and Problem



2, respectively. This paper executes each planner 100 times in
each problem separately based on the setup described above.
In addition, for testing purposes, OSIS is evaluated in three
modes, namely:

1) The default mode: initially, no obstacle density infor-
mation is available, but OSIS maintains the obstacle
density record after each execution;

2) The density reset mode: the obstacle density is reset
after each planning, and the next planning is equivalent
to planning in a completely new environment;

3) The pre-processed mode: prior to planning, the plan-
ning space is pre-scanned to acquire a more accurate ob-
stacle density. Simultaneously, the obstacle density will
not be updated during the execution of the algorithm.

Fig. 4 shows the median path cost and success rate achieved
by all test subjects in Problem 1 and Problem 2. In Fig. 4 (a)
and (c) the squares represent the median cost and time of the
initial solution, and the lines show the median cost over time
of the solution of the almost-surely asymptotically optimal
planners. Error bars show non-parametric 99% confidence
intervals for solution cost and time. In Fig. 4 (b) and (d),
the lines represent the success rate of the planner to find the
initial solution over time.

Note that in Problem 2, AIT* can hardly find the initial
solution within 2 seconds, so there is no data for AIT* in
Fig. 4 (c) and (d). This is due to the fact that the scene in
Problem 2 is too complex and there are a large number of
obstacles in the space, which causes AIT* need to update
the reverse tree frequently and leads to the degradation of the
search performance.

As observed from Fig. 4, regardless of the mode used,
OSIS outperforms existing informed planning algorithms by
achieving faster initial solution finding and convergence to the
optimal solution.

In the simple scenario of Problem 1, there is minimal
variation in the performance of different OSIS modes when it
comes to finding the initial solution. In the complex scenario
of Problem 2, it is evident that the preprocessed mode and the
default mode of OSIS exhibit slightly superior performance
compared to the reset density mode in terms of finding
the initial solution. This advantage arises from their initial
understanding of the obstacle distribution within the planning
space, enabling them to effectively navigate around obstacles
from the outset.

Conversely, the reset density mode of OSIS clears the
historical collision information before each planning, requiring
a period of planning to gather sufficient information and
identify potential obstacles. Nonetheless, even the reset density
mode of OSIS outperforms other informed planning algorithms
significantly.

Furthermore, it is worth noting that the convergence speed
of the other modes of OSIS also gradually decreases over time.
This is because the search strategy of OSIS drives the planner

to stay away from the obstacles as far as possible, resulting
in some clearance between the path and the obstacles. Con-
sidering that in practical applications, the planner is usually
required to keep a certain safe distance from the obstacles, so
the attenuation of convergence speed is acceptable.

For other informed planning algorithms, ABIT* performs
slightly better than BIT*, while EIT* and AIT* suffer from
performance degradation due to frequent updates of the reverse
tree.

TABLE I
PERFORMANCE OF EACH PLANNER IN PROBLEM 1

Planner Avg. Time (ms)
Avg. Edge
Collisions
Detections

Avg. Edge
Valid Rate

BIT* 21.76 99 38.50%
ABIT* 11.42 67 20.88%
AIT* 86.99 66 24.44%
EIT* 69.18 102 10.53%
OSIS 3.86 29 47.80%
OSIS

(Reset Density) 3.98 31 49.57%

OSIS
(Preprocessed) 3.78 19 90.80%

TABLE II
PERFORMANCE OF EACH PLANNER IN PROBLEM 2

Planner Avg. Time (ms)
Avg. Edge
Collisions
Detections

Avg. Edge
Valid Rate

BIT* 111.43 1230 20.27%
ABIT* 116.01 1167 21.40%
AIT* - - -
EIT* 178.18 1253 2.71%
OSIS 53.14 659 42.47%
OSIS

(Reset Density) 61.60 728 43.97%

OSIS
(Preprocessed) 46.64 353 91.56%

Fig. 1 and 3 depict the evolution of the search tree during
the process of finding the initial solution for Problem 1 and
Problem 2, respectively. It should be noted that due to the
complexity of Problem 2, AIT* struggles to find the initial
solution within the allotted execution time. As a result, Fig.
3 (c) showcases the growth of AIT* until the execution time
limit is reached, and the green path represents the closest path
to goal found by AIT* after reaching the upper bound of the
time, and it can be seen that this is a locally optimal path,
which does not actually lead to goal.

Fig. 1 (e) and 3 (e) along with Fig. 1 (f) and 3 (f) present
the growth of the search tree for OSIS in different settings:
without any obstacle density information, and with sufficient
obstacle density information obtained through preprocessing
or multiple planning tasks, respectively.

Based on Fig. 1 and 3, it is evident that OSIS outperforms
other informed planning algorithms in terms of collision detec-
tion, with significantly fewer instances of collision detection
and a higher success rate. Furthermore, thanks to its optimized



rewiring strategy, OSIS exhibits improved efficiency in initial
solution search and quicker escape from local optima.

Tables I and II present the average time taken to find the
initial solution, the average number of collision detections
performed on edges, and the average proportion of edges
successfully passing collision detection for each planner in
Problem 1 and Problem 2, respectively. It is evident that all
versions of OSIS exhibit shorter initial solution finding times,
lower collision detection counts, and higher edge utilization
compared to other planners.

VI. CONCLUSION
OSIS employs two key strategies that contribute to its ability

to efficiently find the initial solution and converge it. Firstly,
it calculates the obstacle density distribution in the planning
space by tracking collision detection results. Based on this
information, it determines the collision factor, which indicates
the likelihood of collision between edges and obstacles. This
obstacle-sensitive approach enables the planner to efficiently
navigates around obstacles. Secondly, OSIS adopts an initial
solution-first path optimization strategy. It delays the rewiring
operation, which optimizes the existing path, until the initial
solution is found. This approach prevents unnecessary path
optimization before finding the initial solution, resulting in
faster space exploration. In addition, it makes OSIS faster
jump out of local optimum, so as to speed up the convergence
of solution. By combining these two strategies, OSIS demon-
strates its capability to rapidly discover the initial solution and
converge efficiently to the optimal solution.
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