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Abstract—With the development of microelectronics in recent
years, the performance of unmanned aerial vehicles (UAVs) has
been improving continuously. Modern rotary-wing UAVs possess
high maneuverability and agility, making them widely applied in
mobile crowd sensing (MCS). In order to solve the shortcoming
of limited battery capacity and expand the mission area of UAVs,
the ground vehicle is introduced as a platform for transportation,
launch, recycle, and recharging UAVs. However, existing studies
only consider the case of vehicle-assisted homogeneous UAVs. In
reality, due to different sensing requirements and UAV hardware,
vehicles may need to assist heterogeneous UAVs with different
sensors, flight speeds, and battery capacities. In this paper, we
formalize and study the vehicle-assisted heterogeneous UAVs path
planning problem, and decompose it into three sub-problems,
namely detection point allocation, UAV path planning, and vehicle
route planning. In order to solve the above problems, we proposes
an efficient power-aware path planning algorithm for vehicle-
assisted multi-heterogeneous-UAV (VHUPA). In VHUPA, we first
design the genetic algorithm to find the allocation scheme of the
detection points, then plan flight paths of UAVs at each parking
spot according to the allocation scheme, and finally optimize the
route of the ground vehicle according to the power consumption
of UAVs to minimize the waiting time for charging. Performance
evaluation demonstrates that time cost of the VHUPA solution is
reduced by more than 21% compared with the existing algorithm.

Index Terms—unmanned aerial vehicle, vehicle-assisted UAV,
power-aware, path planning, mobile crowd sensing

I. INTRODUCTION

With the increase in sensor-rich mobile devices over the
past few years, MCS has developed rapidly as a sensing
method that relies on personal smart devices [1]. Human
involvement is one of the most important characteristics of
MCS. Human mobility offers unprecedented opportunities for
both sensing coverage and data transmission. Meanwhile,
MCS is obviously more cost-effective than traditional sensing
systems. Therefore, MCS has been applied in many fields
especially in modern cities, such as air quality detecting and
traffic monitoring [2]. Besides, due to the economy, flexibility,
and convenience of UAVs, they have been widely applied in
many fields, such as military, agriculture, smart city, etc. With
the increasing popularity of UAVs, UAVs have been considered
to bring new possibilities for MCS in the future [3], [4]. UAVs
integrating computing, control, communication, and sensing
modules can collect data in areas that traditional MCS cannot
penetrate, such as crisis areas and remote areas without ground
equipment.

Despite the mentioned benefits of UAVs, their hovering time
is greatly limited by their battery capacity, which makes them
unable to provide services over a wide range. To optimize
this issue, the ground vehicle is introduced as a platform for
transportation, launch, recycle, and recharging UAVs. Specif-
ically, the vehicle transport UAVs close to the mission point
and launches them to collect data. After completing sensing,
UAVs fly back to the vehicle and are recycled by the vehicle.
Compared to MCS with UAVs, MCS with vehicle-assisted
UAVs can further expand the mission range and reduce the
mission costs [5], [6].

In vehicle-assisted UAVs system, the path planning algo-
rithm is a key issue, which affects the time cost, fuel cost,
and mission range of the system. There are many studies
on vehicle-assisted UAVs for package delivering [7]–[11]. In
these studies, vehicles can also perform delivering, which is
not applicable to the sensing problem studied in this paper. In
sensing problem, the ground vehicle is mainly used to transport
and charge UAVs.

There are some works that have investigated the path
planing of the vehicle-assisted homogeneous UAVs in sensing
problem [5], [6], [12], [13], as shown in Fig. 1(a). However,
The reality is that a vehicle-assisted UAVs system may consist
of different types of UAVs, as MCS missions require different
sensors [14], [15], as shown in the Fig. 1(b). In addition,
it is difficult to guarantee that the UAVs on the vehicle
will perform exactly the same. Depreciation and production
batches may lead to different performance of UAVs. Besides,
the heterogeneity in UAVs exploits various characteristics
of different types of UAVs with different hardware, flight
speed and sensing capabilities, which means have more robust
than homogeneous UAVs [16], [17]. In [18], an experiment
was conducted to compare the performance of homogeneous
UAVs with heterogeneous UAVs, and concluded that in a
heterogeneous system, both slow and fast UAV swarm agents
performed better than homogeneous UAVs. Heterogeneous
UAVs mean have different sensors, flight speeds, and battery
capacities. There may also be multiple types of detection
points. Therefore, the existing path planning algorithms that
only consider homogeneous UAVs cannot be applied.

When involving heterogeneous UAVs and detection points,
path planning of the vehicle and UAVs becomes more com-
plex, which cannot be solved using a single existing opti-
mization method. To solve the problem, we formalize the



(a) Homogeneous detection points and UAVs (b) Heterogeneous detection points and UAVs

Figure 1. Different MCS mission scenarios

path planning and task assignment problem, and then propose
an efficient power-aware path planning algorithm for vehicle-
assisted multi-heterogeneous-UAV (VHUPA). In VHUPA, we
consider that UAVs can carry different types of sensors,
and detection points have different sensing requirements. In
addition, we take into account the difference in battery and
flight speed of UAVs. After completing a mission, UAVs can
be charged on the ground vehicle. And we plan the route of
the ground vehicle according to the remaining power of UAVs.
In general, our goal is to globally optimize the driving route
of the vehicle and the flying paths of UAVs to minimize the
task completion time.

II. RELATED WORK

For MCS with vehicle-assisted UAV, there have been many
studies concerned with path planning for the vehicle and
the UAV to minimize time cost or rewards. Luo et al. [12]
introduced a UAV-vehicle cooperated routing problem, which
is similar to the one studied in this paper, and proposed two
heuristic algorithms. Savuran and Karakaya [19] designed a
path optimization algorithm that allows the vehicle and UAVs
to operate simultaneously.

For vehicle-assisted multi-UAV path planing, Hu et al.
[20] introduced a novel vehicle-assisted multidrone routing
and scheduling problem, and contributed an efficient algo-
rithm(VURA) to solve it. Experiments show that VURA is
superior to other algorithms in efficiency and effectiveness.
In [13], Hu et al. designed a novel algorithm (VAMU) based
on VURA, which allows UAVs to be launched in one place
and recycled in another. It can further improve the efficiency
of both the vehicle and UAVs. Xi, Jie, et al. [5] proposed
a vehicle-assisted multi-UAV path planning algorithm that
considers power consumption. It is the first to take the power
consumption and charging time of UAVs into consideration,
and optimizes the vehicle route, with the purpose of reducing
the charging time in the parking spot. Deng, Xudong, et al.
[10] designed a new vehicle-assisted UAV delivery solution
that allows UAVs to serve multiple customers and takes energy
consumption into account, and presented a hybrid heuristic
algorithm based on an improved K-means algorithm and ant
colony optimization.

However, the above-mentioned works only considered ho-
mogeneous UAVs, which is not consistent with the reality.
In reality, there are likely to be many types of information
that need to be sensed, or there may be UAVs with different
capabilities on the vehicle. Therefore, this motivates us to
consider a more general scenario: using heterogeneous UAVs
with different sensors, flight speeds, and battery capacities to
perform sensing tasks in the MCS system.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In our scenario, there is a ground vehicle carrying multiple
heterogeneous UAVs. A set of detection points with multiple
different sensing requirements is distributed in the target
area. Our mission is to meet every sensing requirements of
all detection points. Heterogeneous UAVs are equipped with
different types of sensors, corresponding to different sensing
requirements. Each detection point may contain single or mul-
tiple types of sensing requirements. Therefore, each detection
point may need to be visited by one or several different UAVs.
UAVs can consecutively visit multiple detection points in
single flight (i.e., perform sensing tasks). But their endurance
is greatly limited by their battery capacity. The vehicle acts as
a charging station, and UAVs can return back to the vehicle
to recharge before the battery runs out.

As shown in Fig. 2, with the transportation of the ground
vehicle, the mission scope of UAVs is expanded. The ground
vehicle sequentially transports UAVs to the pre-selected park-
ing spots. Once the ground vehicle arrives at a parking spot,
UAVs are launched and fly to nearby detection points to
perform sensing tasks. After the UAV completes the sensing
task, it returns to the ground vehicle for recharging. After all
nearby detection points have been visited and all UAVs have
returned, the ground vehicle carrying UAVs sets off for the
next pre-selected parking spot, until every sensing requirement
of all detection points is met.

The problem modeling is as follows: Let S =
{s1, s2, . . . , sNs

} represent the set of different sensor types. In
order to plan the path of UAVs and the vehicle, we construct an
undirected graph G = {V,E} to represent the road network,
where V is the set of vertex and E is the set of edge.
And V is composed of Vd = {d1, d2, . . . , dNd

} and Vp =



Figure 2. System model

{p1, p2, . . . , pNp} , which represent the detection points set
and the candidate parking spots set, respectively. The detection
point is donated by di = (xi, yi, Ri)(1 ≤ i ≤ Nd), where
xi, yi and Ri = {sk1

, sk2
, . . . , skNRi

| skj
∈ S} represent

the coordinate and sensing requirements of di, respectively.
The parking spot pi = (xi, yi)(1 ≤ i ≤ Np), which xi

and yi represent the coordinate of pi. UAVs carried by the
ground vehicle are denoted as U = {u1, u2, . . . , uNu}. And
ui = (spi, ri)(1 ≤ i ≤ Nu), where spi represents the
flight speed of ui, and ri = {sk1

, sk2
, . . . , skNri

| skj
∈ S}

represents the sensor list of ui. Besides, we use the constants
SP and C to represent the speed of the ground vehicle and
the power consumption rate of UAVs, respectively.

The total time t is the sum of the total movement time and
the staying time at each parking spot. And the staying time
at the parking spot is the maximum flight time of each UAV
at this point. The main optimization goal of this paper is to
optimize the sensing task assignment and the path planning
of the ground vehicle heterogeneous UAVs such that the total
time t is minimized.

There are three key issues. The first one is how to as-
sign detection points to parking spots, which is a many-to-
many assignment problem. A detection point is assigned to
a parking spot means that when the ground vehicle parks
at the parking spot, UAVs will visit the detection point.
Furthermore, each sensor requirement of a detection point can
be assigned separately, that is, assigned to different parking
spots. We use adi,kj

and Adi
to denote the allocated parking

spot for the requirement skj of the detection point di and
the allocation scheme of detection point di, respectively.
We denote the allocation scheme for di by Adi

Adi
=

{adi,k1
, adi,k2

, . . . , adi,kNRi
| adi,kj

∈ Vp , 1 ≤ j ≤ NRi
}

The second is how to plan the flight path of each UAV
at each parking spot. After the ground vehicle arrived at
the parking spot pi, UAVs will be released and fly to each
detection point ({dj |pi ∈ Adj}) for sensing according to the
flight route. The flight path needs to cover all the detection
points assigned to the parking, and take as little time as
possible. Donate the task time (i.e., the parking time of the

vehicle) at pi as tpi
, then we have

tpi = max
1≤j≤Nu

tpi,uj

where the flight time of uj at pi is tpi,uj
, and Nu represents

the number of UAVs.
The last one is how to plan the route of the ground vehicle.

This is similar to the Traveling Salesman Problem (TSP), but
more factors need to be considered, such as the charging time
of UAVs. If the charging time of UAVs is longer than the
driving time of the ground vehicle, the ground vehicle needs
to wait for charging at the parking spot. The total movement
time of the ground vehicle, denoted as tu, is the sum of the
travel time and the time to wait for charging. Therefore, we
have the total time t of task:

t = tu +
∑

1≤j≤Np

tpi

where Np is the number of parking spots.

IV. ALGORITHM DESIGN

A. Detection Point Allocation

To reduce flight distance of UAVs, detection points should
be assigned to the closest possible parking spot. However,
this does not mean that selecting the nearest parking spot is
the best solution. The ideal would be for all types of UAVs
to work the same amount of time. Obviously selecting the
closest parking spot will make the allocation uneven, some
parking spots have too many detection points of a certain
type, others too few, resulting in UAVs of this type be idle
or too busy. We design a algorithm to find a better assignment
than selecting the closest parking spot in polynomial time.
It has been proven that genetic algorithms is able to find
optimal and near optimal solutions in generalised assignment
problem [21]. The performance also compares favourably to
all other existing heuristic algorithms. So we modified genetic
algorithm to solve the assignment problem of detection points.
Chromosomes representing allocation schemes are defined
as C = {Ad1 , Ad2 , . . . , AdNd

}. We first add the allocation
scheme of selecting the nearest parking spot as a reference
chromosome to the chromosome pool, which ensures that the
final scheme must be better than or equal to selecting the
nearest parking spot. We used the method in Section IV-B to
calculate the task time consumed by the allocation scheme
in the chromosome, and use the task time as the fitness of
the chromosome, chromosomes with higher fitness will be
eliminated. In order to ensure that the allocation scheme is
feasible, if the calculated power consumption required by the
UAV is greater than the battery capacity of the UAV during
the evaluation, the fitness will be set to infinity.

Next, we perform several rounds of iterations of genetic
algorithm, including selection, crossover, and mutation. The
selection operator removes chromosomes with higher fitness
from the chromosome pool. The crossover operator randomly
select two chromosomes to take a piece of gene and combine
them into a new chromosome. The mutation operator randomly



changes the genes of a chromosome. After several rounds
of iterations, the chromosome with the lowest fitness in the
chromosome pool is taken as an approximate solution.

The pseudocode of the algorithm is shown in the Algorithm
1.

Algorithm 1: Detection Point Allocation
input : The detection points set Vd and the candidate

parking spots set Vp

output: The allocation scheme {Ad1 , Ad2 , . . . , AdNd
}

1 Schromosome ← {};
2 Schromosome

+← The chromosome of selecting the
nearest parking spot;

3 Schromosome
+← Randomly generated chromosomes;

4 for i← 1 to Niterations do
5 Randomly select a pair of chromosomes in

Schromosome, and eliminate the one with higher
fitness;

6 Randomly select a pair of chromosomes in
Schromosome, and take the gene fragments of the
two to generate a new chromosome to
Schromosome;

7 Select a chromosome in Schromosome, and
randomly exchange its 2 genes;

8 return best(Schromosome);

B. UAV Path Planning

When evaluating the allocation scheme, the path of the
UAVs needs to be planned. After the ground vehicle reaches
the parking spot pi, UAVs will be released, and the UAVs
will visit all detection points allocated to pi. Xi, Jie, et
al. [5] has proposed an algorithm for homogeneous UAVs
path planning, and achieved better performance than basic
algorithms in the experiment. However, it does not apply to
heterogeneous UAVs. Therefore, We choose it as the basic
algorithm and make some improvements to make it capable of
handling heterogeneous UAVs. The algorithm in [5] is denoted
as f(p, U, Vd). The input is the parking spot p, the list of
homogeneous UAVs U and the distribution of detection points
Vd, and the output are flight path of UAVs at the parking spot p.
We decompose the requirements of the detection points so that
f(p, U, Vd) can be applied to heterogeneous UAVs, as shown
in Algorithm 2. Specifically, we decompose each detection
point with multiple requirements into multiple detection points
with a single requirement. Then the detection points with the
same requirement are grouped, denoted by Vr. And UAVs with
corresponding sensors Ur are used for path planning.

C. Vehicle Route Planning

After the flight path of UAVs are determined, we get the
power consumption of UAVs to perform data collection tasks
at each parking spot. The power consumption at parking

Algorithm 2: Heterogeneous UAV Path Planning
input : The parking spot p, heterogeneous UAV list

U , the set of heterogeneous detection points V
output: The path for every UAVs

1 Sroutes ← {};
2 Vdecomposed ← {};
3 Srequirment ← {};
4 foreach v in V do
5 x, y ← Coordinate of v;
6 R← Sensing requirements of v;
7 foreach r in R do
8 vnew ← {x, y, {r}};
9 Vdecomposed

+← vnew;
10 if r not in Srequirment then
11 Srequirment

+← r;

12 foreach sensor requirement r in Srequirment do
13 Vr ← {v | v ∈ Vdecomposed & sensing

requirements of v = {r}};
14 Ur ← {u |u ∈ U & sensing type of u = r};
15 Sr ← f(p, Ur, Vr);
16 Sroutes

+← Sr;

17 return Sroutes;

spot pi is the flight time of the UAV at pi multiplied by
the power consumption speed C. In addition, we deduce the
power charged of UAVs in the ground vehicle based on the
distance between the parking spots. We adopt the following
heuristic algorithm to plan the driving route of the ground
vehicle according to power consumption and power charged.
We ensure that UAVs reach each parking spot with more
power. Besides, we reduce the coupling degree between the
path planning of the ground vehicle and the charging time of
UAVs at parking spots through the heuristic strategy, hence
both of them can be optimized independently. The steps to
construct the route of the ground vehicle are as follows:

(1) Construct Initial Candidate Solution
We propose a greedy algorithm to construct the initial route

Rv with the shortest driving time between the parking spots.
It ensures the minimum driving time first and then optimize
the driving route. The pseudo-code is shown in Algorithm 3.

(2) Optimize the Candidate Solution
We design this vehicle route optimization algorithm inspired

by the Floyd-Warshall algorithm [22], which is a simple and
widely used algorithm to compute shortest paths. The steps of
optimizing the candidate solution are as follows:

1) Set i to 1.
2) Find the predecessor parking spot px of (Rv)i. px has a

set of candidate parking spots S, which includes all the
next parking spots except (Rv)i that should be reached
by the ground vehicle.

3) Traverse S, and swap the traversed candidate parking spot
and (Rv)i to generate new routes.



Algorithm 3: Initialize Candidate Solution
input : The selected parking spots set f and the

starting point p
output: The driving route of the ground vehicle Rv

1 Rv ← {p};
2 n← sizeof(f);
3 for i← 1 to n do
4 Find the closest parking spot fj to top(Rv);
5 Rv

+← fj ;
6 f

−← fj ;

7 return Rv;

4) Calculate the time cost of the new routes generated by
step 3. Choose the route with the shortest time cost and
update the sequence Rv of the new route at the same
time.

5) Set i to i + 1 and repeat the above steps until the time
cost of the new route no longer changes.

V. EXPERIMENTS

In this section, we evaluate the proposed algorithm through
some simulation experiments. We use the simulator imple-
mented in [6]. Since we are the first to consider vehicle-
assisted heterogeneous UAVs, there are no similar algorithms
for comparison. Therefore, in order to evaluate the perfor-
mance of VHUPA, we designed two base algorithms for
comparison. The first one is VMUPA [5], which is a power-
aware path planning algorithm for vehicle-assisted homoge-
neous UAVs. We made some modifications to it to support
heterogeneous UAVs. In the modified version, we assign all
sensor requirements of all detection points to the nearest
parking spot, and solve the route independently for each type
of UAVs. The second is the DFS algorithm, which uses DFS to
enumerate allocation schemes or routes, then evaluates in the
same way as VHUPA, and finally selects the optimal solution.
Note that DFS does not enumerate all the solutions, but only
greedily select several options for enumeration, otherwise the
time complexity is too high.

In our experiments, a number of detection points and park-
ing spots are randomly generated in the 10000 unit * 10000
unit area, of which 1 unit represents 1 m. There are 5 different
sensor types, and each detection point may require one or more
of them. (e.g., R1 = {s1, s3, s5} means detection point d1
requires data from sensors s1, s3, s5) A ground vehicle with
several heterogeneous UAVs is used to visit detection points in
the target region. The speed of the vehicle and UAVs are set to
be 20 unit/s and within the interval [30, 60] unit/s, respectively.
We paid special attention to two performance metrics. The
first is the time cost t of the solution, which is the sum of
the ground vehicle time cost tu and UAV flight time cost. The
second is the time consumed by the algorithm, which can be
used to evaluate the time complexity of the algorithm.

(a) UAV time cost (b) Vehicle time cost

(c) Total time of solution (d) Algorithm time cost

Figure 3. Time cost under different number of detection points

In the first experiment we investigated the impact of the
number of detection points on different algorithms, as shown
in Fig. 3. The performance of VHUPA are related to the
number of iterations of the genetic algorithm. As mentioned
in the second experiment below, better result quality can be
achieved when the number is set to 100, and better algorithm
efficiency can be achieved when the number is set to 50.
Therefore, in the first experiment, the number of iterations
is set to 50 and 100, which are denoted as VHUPA-50 and
VHUPA-100, respectively. It can be seen that the time cost
is positively correlated with the number of detection points.
The total solution time of the VHUPA algorithm is shorter
than that of VMUPA. With the increase of detection points,
the advantages of VHUPA become more and more obvious.
When the number of detection points is low, the total solution
time of DFS is basically the same as that of VHUPA, and
when the number of detection points is large, the result of
DFS becomes worse. Because DFS adopts a greedy strategy
for partial enumeration, when the number of detection points
is large, the coverage of enumeration becomes lower, resulting
in worse results. Fig. 3(c) shows the total time consumed
by the entire system. When the number of detection points
exceeds 100, the running time of DFS exceeds 100s. The time
consumption of DFS increases exponentially. It is foreseeable
that when the number of detection points continues to grow,
DFS will no longer be feasible because the algorithm takes too
long. VHUPA and VMUPA still maintain a short algorithm
running time when the number of detection points is large,
and the overall running time of VHUPA is lower than that of
VMUPA. When the number of detection points is 200, the time
cost of the VHUPA is reduced by more than 21% compared
with VMUPA.

VHUPA uses two genetic algorithms, and the number of



Figure 4. Time cost under different number of iterations

iterations of the genetic algorithm has impact on the results.
A second experiment is designed to investigate the effect of
the number of iterations on VHUPA. Take the number of
detection points as 100, take the number of iterations as 10
to 120, and take 30 results for each group. The time cost
distribution of the solution by VHUPA is shown in Fig. 4.
It can be seen that when the number of iterations is 10,
VHUPA can only obtain the worst result. When the number of
iterations is between 20 and 50, the distribution of the results
is relatively scattered. When the number of iterations is greater
than 50, the distribution of the results tends to be stable and
close to the optimal solution. When the number of iterations
is greater than 100, the distribution does not change further.
Therefore, when the number of iterations is between 50 and
100, a balance between result quality and algorithm efficiency
can be achieved.

VI. CONCLUSION

In this paper, we propose an efficient and power-aware path
planning algorithm for vehicle-assisted heterogeneous-multi-
UAV. To the best of our knowledge, we are the first to take the
heterogeneous UAVs and detection points into consideration.
We formalize this problem and prove that it is NP-hard.
And we design the VHUPA algorithm that can solve the
problem. In VHUPA, we first use genetic algorithm to select a
detection point allocation scheme, allocate the detection points
to parking spots, then calculate the UAV path at each parking
spot, and finally plan vehicle route according to the power
consumption of UAV at each parking spot. The simulation
results have shown that VHUPA significantly outperforms DFS
and VMUPA in terms of efficiency and result quality. In most
cases, the time cost of the VHUPA solution is reduced by
more than 21% compared with VMUPA.
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