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Due to its wide coverage and strong scalability, spatial crowdsourcing (SC) has become a
research hotspot in recent years. In order to assign tasks to closer workers, it is necessary
for workers to provide accurate locations to the server. However, it will result in the leak-
age of the participants’ location privacy. Existing works provide each worker with the same
level of location privacy protection, which cannot meet the different privacy requirements
of various workers. In addition, most works assume that the tasks are single-location tasks,
and do not consider multi-location tasks. In this paper, we propose the Multi-location Task
Allocation Problem with personalized location privacy protection (MLTAP). As far as we
know, we are the first to study MLTAP. We propose a Multi-location task Allocation frame-
work with Personalized location Privacy-protecting (MAPP). In order to allocate tasks effi-
ciently, we use the R-tree to store workers and minimum bounding rectangle to represent
multi-location tasks, thus filtering the unreachable workers for tasks. To better eliminate
the adverse effect of location confusion, the SC server sorts candidate workers by the rank-
ing metrics and allocates multi-location tasks efficiently. Finally, we conduct experiments
to verify that MAPP has good performance in terms of utility.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of wireless networks, as well as the increasing communication and computing capabilities of
mobile devices, a new form of crowdsourcing - spatial crowdsourcing (SC) has emerged [1]. SC has been widely used in traf-
fic monitoring, news reporting, and so on.

As shown in Fig. 1, after workers and task publishers register with the SC server, workers need to upload their real-time
location information. Task publishers send some spatial tasks to the SC server with instructions, available resources, remu-
neration information, and so on. For example, the transportation authority publishes some tasks about collecting traffic data
in different places. After receiving tasks, the SC server calculates the proximity between workers and each task, and then
assigns it to the appropriate worker. The worker goes to the specified location and performs the task according to its require-
ment. When the task is completed, the worker sends the execution results to the task publisher by uploading them to the SC
server. Finally, the task publisher pays the salary to the worker via the SC server [2].
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Fig. 1. Spatial crowdsourcing workflow.

Compared with the traditional wireless sensor networks (WSNs), SC has many advantages. The SC platform saves addi-
tional costs in installing and maintaining large scale hardware infrastructure and provides broader coverage than WSN. In
recent years, SC has been extensively studied and applied in academia and industry, such as WiFiManager [3], an SC platform
that collects Wi-Fi information using Android devices across 200 + countries/regions.

How to allocate tasks efficiently is an essential problem in SC. Some studies [4] aim to increase the number of assign-
ments as many as possible during the task allocation process and reduce the total distance traveled by workers, so that
SC platforms can improve the quality and effectiveness of their services. To efficiently assign tasks, workers are usually
required to expose their accurate location to the SC server. Then the SC server assigns the tasks to the near workers.

However, the SC server can not always be fully trusted. Based on the location information uploaded by the worker, the SC
server and other SC participants can deduce the sensitive information of workers, such as identity, address, etc. Once the
location information is compromised by the untrusted SC server, the workers’ privacy will be seriously threatened [5].
Adversaries can launch attacks from such information as surveillance, tracking, identity theft, etc. Workers may not be will-
ing to upload their true location information or even quit the SC service. Therefore, not only allocating tasks efficiently but
also protecting the worker’s location privacy is essential to SC.

In recent years, there have been some studies [6,7] on location privacy protection in SC. In [6], Qiu et al. take the dynamic
traffic conditions and network topology into consideration. The weighted directed graph is used to describe the movement of
workers. Based on the graphical model, they design a geo-obfuscation (GO) function for workers to maximize the location
privacy of workers and formulate the problem of obtaining the best GO function into a linear programming problem. Wang
et al. propose a location privacy-preserving task allocation framework with geo-obfuscation [7]. Workers obfuscate their
locations under the guarantee of differential and distortion privacy. In order to achieve optimal task allocation with the
differential-and-distortion geo-obfuscation, they formulate a mixed-integer non-linear programming problem to minimize
the expected travel distance of the selected workers.

However, most of the existing studies have two major drawbacks. First, they assume that various workers have same
location privacy levels, which makes some workers are under-protected and others are over-protected. Second, they only
take into account single-location tasks (for example, collecting data at a location). But in the practical application of SC, many
tasks published by submitters are multi-location tasks (for example, taking photos at location A and location B). As far as we
know, there is no research on multi-location task allocation with location privacy protection.

In this paper, we propose the Multi-location Task Allocation Problem with personalized location privacy protection in SC
(MLTAP). There are two challenges in the MLTAP problem.

1. How to estimate the proximity of worker to task given only the worker’s confused location.
2. How to maximize utility on multi-location task allocation.

We propose an efficient Multi-location task Allocation framework with Personalized location Privacy-protecting (MAPP).
It can effectively assign multi-location tasks to appropriate workers while protecting the location privacy of workers. The
basic idea is to convert the real location of each worker into a circular area. The radius of the circle is determined by the
privacy level, which is set by the worker. These circular areas are indexed by the R-tree. The SC server saves the location
of the task with minimum bounding rectangle (MBR). The candidate workers for the task are those whose circular areas
intersect with the MBR of the task. The SC server evaluates the proximity between the candidate worker and the task,
and then pairs the worker and the task accordingly.

The main contributions of this paper are as follows:

e We propose an efficient Multi-location task Allocation framework with Personalized location Privacy-protecting, which
not only allocates multi-location tasks efficiently, but also provides personalized protection of location privacy for
workers.

e We propose a task pruning strategy to improve allocation performance. We prune the unreachable workers using the R-
tree of workers and the MBR of each multi-location task to produce the candidate worker set for each task.
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o We conduct extensive experiments on real-world and virtual datasets. The results show that MAPP can provide higher
utility and lower average error.

The rest of this paper is organized as follows. In Section 2, we introduce the related works of SC. The problem modeling is
presented in Section 3. In Section 4, we introduce the proposed solutions and algorithms in detail. In Section 5, we show the
experimental settings and experimental results. We summarize the full paper in Section 6.

2. Related works

In this section, we mainly present the related works from two aspects: privacy protection and task allocation in SC.

2.1. Privacy protection

Privacy protection in SC can be divided into two categories: location privacy protection and data privacy protection.

2.1.1. Location privacy protection

In SC, workers upload their locations to the SC server. The attacker may infer the identity, address, and other privacy
information from their locations, which poses a great threat to workers. Existing location privacy protecting methods mainly
include cloaking, differential privacy, and encryption.

Cloaking. When the locations of workers are cloaked in an area, the attacker can not distinguish them in this area. Kron-
tiris et al. propose a scheme to transform workers’ point coordinates into a block in space using K-anonymity [8]. The loca-
tions uploaded by workers contain block ID and time interval ID, instead of absolute location and time. At least k workers are
in the same block in a time interval so that it is difficult for adversary to distinguish k workers according to the locations.
Dong et al. propose a solution to protect location privacy when providing fine-grained location services [9]. The workers send
anonymous coarse-grained location information to the server and encrypt fine-grained location information to the task sub-
mitter. Chen et al. introduce Pseudonym Certification Authority(PCA) to generate different pseudonyms for the same worker
[10]. The worker submits multiple data reports to the server using different pseudonyms, making it impossible to associate
each worker.

Differential Privacy. Differential privacy makes it impossible for the attacker to find the original location information of
workers by confusing their location information. To et al. use the trusted Cellular Service Provider (CSP) to receive the real
locations of workers [11]. CSP applies differential privacy to hide the real locations of workers and sends them to the SC ser-
ver. Qiu et al. take into account the features of vehicle workers’ mobility in vehicle road networks [12]. They design a location
obfuscation strategy to minimize the loss of quality-of-service (QoS) due to task distribution with location obfuscation, while
guaranteeing geographic differential privacy to be satisfied.

Encryption. Encryption is often used for location privacy protection. The location information of workers and tasks is
encrypted so that only participants with keys can know their real location information. Shen et al. propose an
encryption-based task allocation method [13], which introduces the Privacy Service Provider (PSP) to collect encrypted data
and encrypted location information from workers. The SC server assigns workers to tasks through communication with PSP.

2.1.2. Data privacy protection

In addition to location privacy information, the data collected by workers may also contain key privacy information. For
example, street view photos may expose the travel information of other people, so the information collected by workers
must be protected. The prior art is mainly homomorphic encryption, adding noise, cloaking or based on the system structure.

Homomorphic Encryption. Homomorphic encryption means that the data is processed and decrypted after homomorphic
encryption, and the result is consistent with that obtained by direct processing. Gunther et al. propose an encryption scheme
[14], which introduces a trusted third party to issue keys to workers. Then workers use the private key to encrypt data,
avoiding the server or other attackers from obtaining data. Zhuo et al. use BGV homomorphic encryption for identity man-
agement and key management through a trust organization [15]. The scheme uses homomorphic encryption and homomor-
phic hash function to verify the correctness of data.

Adding Noise. Adding noise to the data can make the attacker unable to know the original data and protect the data secu-
rity. Chen et al. propose a scheme to protect data privacy by adding random noise to each data message [16]. The noise is
carefully selected to ensure privacy. Other schemes [17] add random disturbance to sensor data to protect data privacy.
[18] uses a deep neural network to decide what kind of noise to inject. When numerous disturbed data are aggregated
together, they can offset the deviation caused by disturbance.

Cloaking. Cloaking is a helpful method for data privacy protection, much as location privacy protection. Mahanan et al.
propose a data privacy preservation heuristic algorithm using k-anonymity [19]. The algorithm is created based on the
observations on the anonymous property of the problem structure, which can eliminate the privacy constraints considera-
tion. Gisdakis et al. introduced a trusted third party for workers’ identity and key management [20]. So the adversary can not
associate the data and the worker, which well protects the data privacy of workers.
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Based on System Structure. Based on different system structures, there can be different ways to protect data privacy. Wang
et al. create a state decomposition scheme to safeguard privacy from eavesdroppers in distributed systems [21]. Each agent’s
original state is divided into two sub-states to avoid disclosing individual state information. One of which takes over the
original state’s function in interactions with other nodes. The other sub-state only interacts with the first one and is invisible
to other nearby agents. Zhang et al. investigate dynamic average consensus, which relies on algebraic graph theory and
Lyapunov-based control theory [22]. An et al. propose a new framework for opacity in cyber-physical systems to find dis-
tributed estimate algorithms that increase opacity while maintaining estimation accuracy [23].

2.2. Task allocation

Task allocation in SC can be divided into two categories: single task allocation and multiple task allocation.

2.2.1. Single task allocation

Each task is only assigned to one worker, who is selected from the candidate workers. Single task allocation can be
divided into online allocation and offline allocation according to the time of the task allocation.

Online Allocation. In online allocation, the SC server assigns workers or tasks as soon as it receives their locations. Tong
et al. design an online task allocation mechanism to deal with the micro-task allocation problem [24]. Pu et al. propose
an online distribution system called CrowdLet [25], and task requesters can actively recruit appropriate workers to complete
tasks.

Offline Allocation. Offline allocation means that the server knows all the information of workers and tasks, so it can design
algorithms to achieve optimal allocation [26]. The task offline allocation problem can be solved by being reduced to the prob-
lem of maximum weighted bipartite matching [27].

2.2.2. Multiple task allocation

Multiple task allocation is mainly divided into homogeneous task allocation and isomeric task allocation according to dif-
ferent task types.

Homogeneous Task Allocation. Homogeneous task means that the requirements of each task on the platform are basically
the same except for the location. Song et al. consider the requirements of different SC tasks on Quality of Information (Qol)
[28]. They propose a multiple task allocation strategy by selecting a minimum subset of workers under the total budget con-
straint to ensure Qol. Yu et al. build a multitask screening decision tree to allocate multitasks. They calculate the candidate
tasks’ time difference, travel cost ratio, etc. to improve the resource utilization rate of the SC platform. [29].

Isomeric Task Allocation. Isomeric task means that each task has different requirements for worker’s ability and deadline.
Compared with homogeneous tasks, isomeric tasks also need to consider the differences between each task. Xiao et al. study
the worker selection problem for deadline-sensitive tasks [30]. They recruit multiple workers for a task in order to meet the
task deadline. Wang et al. transform the multitask allocation problem into a bipartite graph matching problem [31]. Consid-
ering the availability of sensors carried by participants, they propose an iterative greedy algorithm to solve it.

3. Attack model and problem formalization

In this section, we first introduce the attack model, then propose the Multi-location Task Allocation Problem with person-
alized location privacy protection in SC (MLTAP) and finally formalize it.

3.1. Attack model

In this paper, we adopted the semi-honest model proposed in [32] as the attack model. That is, SC servers, workers and
task publishers are curious, but not malicious. They collect all the information they can, but do not collude with each other to
gather more information. The assumption is realistic, because if workers and task publishers want to finish the task, there is
little incentive for them to collude with others [33]. Besides, if the SC servers act maliciously, their reputation will be seri-
ously damaged [34].

After a task is completed, the worker responsible for it sends results to the task publisher via the SC server, and the task
publisher pays the salary. We mainly focus on the worker’s location privacy. The data privacy of workers and task submitters
(e.g., IP address, PayPal account, etc.) is not considered in this paper.

3.2. Problem definition

In SC, workers upload their location information to the SC server. When a task publisher submits a multi-location task to
the SC server, the SC server immediately filters the appropriate workers for the task and assigns a near worker to the task.
The selected worker goes to the multiple places to perform the task and sends results to the task publisher. Table 1 lists the
commonly used notations in this paper.

In order to facilitate the description and formalization of the problem, we first introduce the following definitions.
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Table 1
Summary of notations.
Notation Description
w worker
Ly real location of the worker
dyin(w) willing distance of the worker
L, confused location of the worker
€ privacy level
t task
Is(t) sub-location of the task t
d(w,t) distance between the worker w and the task ¢
asm(w, t) assignment with the worker w and the task t
C(ly, dyin(w)) willing circle of the worker
C(’st €) confusion circle of the worker

Definition 1 (Worker). Worker w has smart devices with sensors (e.g., mobile phones), and can move to the locations of the
task to complete it.

To protect the location privacy, the worker w does not upload the real location I,, to the SC server. Instead, the worker w
sets the privacy level € and generates the confused location I, where d(l,, I,)) < € and I, # I,,. Then the worker sends [,, and €
to the SC server. The circle c(l,,, €) with center I,, and radius € is called the confusion circle.

The worker w sets the willing distance d,;(w) to decide how far he or she will accept the task. The willing circle
¢(lw, dwin(w)) is a circle with the real location l,, as the center and the willing distance d,,;(w) as the radius. Once the task
t is not within the willing circle, i.e., d(w,t) > d,u(w), the worker w is not accessible to the task t, and will refuse it.

The set of workers is represented by W, where W = {wq,w>,...}.

Definition 2 (Task). Each task t is a multi-location task, which requires a worker w to go to all locations of the task t and
perform corresponding actions. Each location that needs to be visited in the above process is called a sub-location s(t). Each
task contains a set of sub-location Ls(t) = {Is;(t),l2(t),...}, and a worker w is assigned to traverse these sub-locations.

The set of tasks is denoted by T, where T = {t;,t5,...}. For each task t, all the workers who are possible to accept it form a
candidate worker set W(t).

Definition 3 (Distance between the Worker and the Task). The distance between the worker w and the task t is defined as the
distance between w and the nearest sub-location k(t) to w, which is denoted by d(w, t). That is,

d(w,t) = min (d(w, L(©) (1) € Ly(¢)) (1)

Definition 4 (Task Assignment). In this paper, we focus on online allocation, that is, workers upload their real-time locations
to the SC server. The task publishers submit tasks to the SC server constantly. After receiving the task information published
by the task submitter, the SC server immediately assigns a worker to the task. So the worker-task pair forms an assignment
asm(w,t), where d(w,t)<d,y(w). The set of all task assignments is represented by A(W,T), where
AW, T) = {asm(wy, t1),asm(wy, t3),...}.

We use minimum bounding rectangle (MBR) to surround the sub-locations L(t) of t. If the worker w's willing circle
¢(ly, dyin(w)) has an intersection with the MBR of the task t, it means that the worker is possible to reach the task and should
be added to the candidate worker set W.(t) of the task t.

As shown in Fig. 2, the solid rectangle MBR; represents the MBR of the task t;, the dotted circle represents c(l,, dyin(w)).
Since MBR; intersects c;, the worker w; can be a candidate of t;, i.e., W(t;) = {w;}. Similarly, MBR, has intersection with
c1,¢2 and c;. MBR; intersects ¢; and cs. So, W(t;) = {wy,wy, w3}, Wc(t3) = {w,, ws}. In the online scenario, tasks arrive in
a certain order. Assuming that tasks arrive in the order of t;,t, and t;, w; can be assigned to t;. w, and w; can be assigned
to t, and t3, respectively. That is, A(W,T) = {asm(wy, t1),asm(ws, t;), asm(ws, t3)}.

Definition 5 (Utility). Utility U(W,T) refers to the number of assignments after task allocation, i.e., UW,T) = |A(W, T)|. This
is an important metric to measure the performance of the SC framework. Due to the confusion of the worker’s location, the
SC server may incorrectly select candidate workers for a task. Therefore, the challenge is to maximize the utility with
location confusion. High utility indicates that more workers are assigned to tasks and more tasks can be performed.
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Fig. 2. Task allocation.

Definition 6 (Average Error). Owing to the confusion of the worker’s location, the SC server may misjudge the accessibility of
the worker w to the task t and tries to assign the task t to the unreachable worker w. The worker w will reject the task t,
which forms an error assignment asme.(w, t). The average error E(W,T) is the ratio of the number of error assignments to
utility, that is,

_ {asmer(w, t)lw e W, t e T}|

EW,T) = UW.T) (2)

where |{asm.-(w, t)|w € W, t € T}| represents the number of error assignments. The average error reflects the trial-and-error
cost required for each successful allocation. The challenge is to minimize the average error, which can reduce the additional
communication and calculation costs caused by the reassignment.

Definition 7 (Location Privacy). To protect location privacy, the worker uploads confusion circle c(I,, €) to the SC server. The
real location of the worker [, is hidden in the confusion circle. If the information of the confusion circle is illegally disclosed,
the adversary can guess the real location of the worker. The guess about the location is denoted by . If the distance between
lg and I, is closer than the threshold r, which is a constant, we assume that the real location is leaked. The probability of
leaking the real location of a worker Pr(leak) can be approximated as Pr(d(lw,l;) <), which equals to Pr(l; € c(lLy,7)).

We define the location privacy LP as the probability that the real location of the worker is not leaked. Then LP can be cal-
culated as follows.

1-13, d(lw,l,) +7 <€,
Lp = prtve?—rxd(ly k) sin g ' ®)
R CL LTI W

r2+d(lw.l(”)2—£2

where d(l,, I’W) is the distance between worker’s real location I, and confused location [, p = arccos 2red( ]

62+d(lw‘l,’”)271’2

V = arccos W

A

\5 (=
B

(a) (b)

Fig. 3. Two kinds of position relationships between c(l,,, €) and c(ly, 7). (a) c(I,,, €) contains c(ly,r). (b) c(L,,, €) intersects c(Ly,r).
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Proof. As Figs. 3,4, shows, since I, is inside c([;,, €), there are only two kinds of position relationships between c(l;,, €) and
c(lw, 1), that is, containing and intersecting. The intersection of c(1,,,€) and c(ly,r) is denoted by Zone;.

When c(l’w, €) contains c(ly, ), Zone;'s area Azye, can be calculated by Azone, = mr?, where d(1,, l",v) +r<e

When  c(l,,€) intersects  c(hv,T),Azone; = Avals +Acars — Aara, — Aarp,.  Where  d(ly, L) +r>€  Let
% V = arccos % The area of the cir-
cular sectors Aqa, s and Aqay,, can be calculated by Aqa,s = 7?24, and AWW 5 = Te22v, respectively. The formula for the area
of the triangles Ay, and Ay g, are Ay a, =Aam, =T x d x Sinf. SO, Azne, = pr? + ve? —r x d(ly, ) x sin i, where
d(lw,1,) +1> €

We can derive that LP = 1 — Pr(leak), based on the definition of LP.

When d(ly, I,,) +r < €, we randomly select a point in c([,, €), the probability density function pdf of the point in c([,,, €) is
1. Pr(leak) is calculated as follows.

c(l(,v F) ’

u=ZAlL, v = /ALl,. According to the cosine theorem, 1t = arccos

A

Pr(leak) = [ [y, PAf (x,y) dxdy

—_ _1
- jonnei Af('(/v-‘) dXdy (4)

AZonei
Ac e
(%)

Eq. (3) can be derived from the above equations.

Theorem 1. When the privacy level € increases, LP also increases.

Proof. As Eq. (3) shows, when € is deterministic, the minimum value of LPis 1 — ;—z As the privacy level € increases, LP also
increases, which can better ensure the protection of location privacy.

3.3. Problem formalization

Given the worker set W and the ordered task set T, the objective is to select an appropriate set of assignments A(W,T)
while maximizing the utility UW,T).
The allocation process is subject to the following constraints:

e Spatial Constraint: The assignment asm(w, t) needs to ensure that the distance d(w, t) from the worker w to the assigned
task t does not exceed the willing distance of worker d,iy(w).

e Quantity Constraint: Each task t can only be assigned to one worker w, and each worker w can only accept one task t, that
is, w and t can only appear once in A(W,T), respectively.

Then, the MLTAP problem can be formulated as follows:

maximize UMW, T) (5)
Subject to:

d(w,t) < dwn(w) (we W,teT) (6)

Yw, [{wlw € AW, T)}| < 1 ()

v, |{tlt e AW, T} < 1 (8)

There are two major challenges to solve the MLTAP problem:

1. How to estimate the proximity of the worker to the task when given only the worker’s confused location.
2. How to maximize utility on multi-location task allocation.

4. Proposed scheme

In this section, we mainly introduce MAPP. MAPP realizes multi-location task allocation efficiently and provides person-
alized location privacy protection for workers.
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SC Server
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Fig. 4. Architecture of MAPP.

4.1. Architecture

The design principle of MAPP is as follows.

e Privacy: Each worker could choose the appropriate privacy level according to the worker’s own needs. Our designed

framework MAPP could effectively protect location privacy according to worker’s privacy level.

o Performance: MAPP can effectively estimate the proximity of worker to task given only the worker’s confused location

and maximize the utility on multi-location task allocation.

To achieve the design principle, MAPP is mainly composed of four stages: location confusion, constructing candidate

worker set, sorting candidate worker set and task allocation.

1.

2.

Location confusion. Each worker does not upload the real location directly, but submits a confusion location generated
through the location confusion algorithm.

Constructing candidate worker set. We use the R-tree to store the MBR of all confusion circles of workers. Sub-locations in
a task are surrounded by an MBR. We can get the candidate worker set by finding the R-tree nodes intersected with the
MBR of the task.

. Sorting candidate worker set. In order to increase utility, the SC server ranks each candidate worker according to the prox-

imity of workers to tasks. However, due to the location confusion, it is hard to estimate the proximity, especially when the
privacy level is various. We propose various algorithms using different ranking metrics, that is, distance, probability and
expectation. The SC server sorts candidate workers by the rank.

. Task allocation. The SC server sends the task to the candidate worker, who determines whether the task is reachable. If

this is the case, the worker will accept it. Otherwise, the task is sent to the next candidate worker by the SC server.

4.2. Location confusion

In order to provide different levels of location privacy for various workers, MAPP allows workers to choose the appropri-

ate level of location privacy according to their own needs. For example, workers who are more serious about their location
privacy can raise their privacy level €. Conversely, workers who pay less attention to their location privacy can downgrade
their privacy level, which can better match their expectations for the protection of location privacy.

As shown in Fig. 5, we confuse the location of each worker, convert the location into a circle and then upload it to the SC

server. As shown in Algorithm 1, the detailed steps of location confusion are as follows:

Fig. 5. Location confusion.
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1. Each worker chooses a privacy level € according to his or her will. The circle with the real location I, of the worker as the
center and € as the radius is denoted by c(ly, €)

2. Randomly select k points (I, 5, ..., ) in the circle c(l,,, €), and calculate the average value of them as the confusion loca-
tion I, according to Eq. (9). Taking I, as the center and € as the radius, we can get the confusion circle c(l,,, €). It is obvious
that the confusion circle c(I,,, €) must contain the real location I,, of the worker.

, 1 1
ly= (kzxi’k E yi) 9)
i=1 i=1

3. The worker sends the confusion circle c(I,, €) to the SC server, which ensures that the SC server and other SC partic-
ipants can only see the confused location uploaded by the worker, so as to avoid the disclosure of real location.

Algorithm1 Calculate Confused Location

Input: ¢, k, Xy, ¥\,

Output: x,,, y,,

1: Initialize empty X, Y, count =0

2: while count < k do

3: repeat
Randomly generate x € (x — €,x + €)
Randomly generatey € (y — €,y + €)

4
5
6: until \/(X —xw) (Y -y <€
7
8:

Add x to X, add y to Y, count + +
end while
9: x|, = sum(X)/k, y,, = sum(Y)/k
10: return x,,, y,,, €

The location confusion algorithm protects the workers’ location privacy but makes the SC server difficult to judge the
accessibility between the worker w and the task t. As shown in Fig. 6, compared with Fig. 2, the locations of workers are con-
fused, which are denoted by llw,» The solid rectangle MBR; represents the MBR of the task t;, the dotted circle represents the
willing circle c(l;,, dwu(w)).

MBR; only intersects c;. MBR; intersects c1, ¢, and c3. MBR; intersects cs. So, wy is the candidate worker of t;. wy,w, and
ws are the candidate workers of t,. w; is the candidate worker of t;. That is, W((t;) = {w;}, W (t2) = {w1,w,, w3}, and
W.(t3) = {ws}, which is different from the worker accessibility described in Section 3.2 (see Fig. 7).

4.3. Constructing candidate worker set

It is obvious that enumerating all the worker-task pairs and judging the accessibility of them is costly. In order to allocate
tasks efficiently, the SC server needs to screen out the workers who are unable to reach the task.

In the constructing candidate worker set stage, we use the R-tree to index workers. R-tree is a tree data structure used for
spatial access methods. The key idea of R-tree is using the MBR to group nearby nodes in the higher level of the tree. If a
query does not intersect the MBR, it cannot intersect nodes inside the MBR. R-tree is a balance tree, so it has good perfor-
mance for indexing multidimensional information [35].

The steps of constructing candidate worker set using the R-tree are as follows:

1. Build the R-tree for W.
After the location confusion algorithm is applied, the SC server needs to eliminate the deviation of reachable workers
caused by location confusion as much as possible. As shown in Fig. 8, the SC server build the MBR of c(l(N, €+ dw,-”(w)),
where the radius is the sum of the privacy level € and willing distance dy;(w). A node of R-tree is denoted by R;, which
contains the MBR. Fig. 9 shows the constructed R-tree structure.

2. Build the MBR for t.
When the task t arrives, the SC server surrounds the sub-locations Ls(t) with the MBR which is shown in Fig. 8.

3. Put workers in leaf nodes intersecting with the MBR of t into W.(¢).
The SC server prunes those R-tree nodes which do not intersect with the MBR of the task t. In Fig. 8, since R;s and R;; and
their child nodes do not intersect with the MBR of t, they can be pruned. The workers stored in the rest of the leaf nodes
form the candidate worker set W.(t). In Fig. 8, Ry and R, intersects the MBR of t, so, W(t) = {wy,w,}.
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Fig. 6. Wrong accessibility after location confusion.

4.4. Sorting candidate worker set

For task allocation, we need to rank the reachable workers, sort them, and select the worker with the highest rank for the
task in order to maximize utility [33].

The ranking metric is essential, since it determines which worker should be chosen and selected for the task. The worker
who is closer to the task needs to have a higher rank. In this paper, we use the proximity from different aspects as various
ranking metrics, that is, distance, probability and expectation.

Distance is often used to evaluate proximity. We first propose a distance-based algorithm as the baseline algorithm,
namely, Distance-based Algorithm (DA). In DA, the SC server calculates the distance between the worker’s confused location
and the task to estimate the proximity. However, it is inaccurate to use the distance between the worker and the task to
estimate the proximity given only the worker’s confused location.

In order to solve the adverse effects of location confusion, we calculate the probability that the distance between the
worker and the task is less than the willing distance, namely, accessibility probability, which is denoted by
Pr(d(w,t) < dyiy(w)). Probability-based metric considers the possible real location of workers. The workers who are more
likely to be assigned to the task are prioritized when ranking based on accessibility probability. We propose two
probability-based algorithms, that is, the Area Probability-based Algorithm (APA), and the Monte Carlo Probability-based
Algorithm (MPA). APA uses integral to calculate the accessibility probability, but it is time-consuming. MPA uses the Monte
Carlo algorithm to estimate the accessibility probability, hence reducing the overhead.

However, probability-based algorithms do not consider the distance between workers and tasks. Finally, we take both the
distance and the accessibility probability into consideration and combine them as the ranking metric. To eliminate the error
of location confusion, we use distance expectation to evaluate the distance between the worker and the task. It is hard to
calculate expectation through integral, so we use the Monte Carlo algorithm instead and propose Monte Carlo
Expectation-based Algorithm (MEA).
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Fig. 7. Accessibility has changed after location confusion. (a) Accessibility before location confusion. (b) Accessibility after location confusion.
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Fig. 8. Constructing candidate worker set using R-tree.

4.4.1. Distance-based Algorithm (DA)

Distance is a common metric for evaluating proximity. The idea of DA is that the SC server regards the confused location
submitted by the worker as the real location, and calculates the distance between the workers in W.(t) and the task to esti-
mate the real distance.

As Algorithm2 shows, the SC server calculates d(I,, t) for each worker w in W.(t). Then the server sort W((t) by d(l,,, t) in
ascending order.

Algorithm 2 Distance-based Algorithm

Input: W (t), t
Output: sorted W,(t)
1: for w; € W.(t) do

2: Calculate d(l{,vi, t)

3: end for

4: Sort W,(t) in ascending order by d(l;vl, t)
5: return W(t)

4.4.2. Probability-based algorithm

Due to the location confusion, there is a deviation between the real location and the confused location. So DA can not
reflect the true proximity.

Considering the process of the location confusion, the worker’s real location is evenly distributed in the confused circle.
Thus, we can calculate the accessibility probability Pr(d(w, t) < dywu(w)) to estimate the proximity.

When ranking according to the probability of accessibility, workers who are more likely to be allocated to the task will be
given higher priority. Therefore, we use accessibility probability as ranking metric and propose probability-based algorithms
to evaluate it. We first estimate the probability using integral calculation, but it is hard to calculate when integral region is
the intersection of circles. Thus, we use Monte Carlo algorithm to calculate probability, which reduces the calculation time.

Area Probability-based Algorithm. In this paper, we propose the Area Probability-based Algorithm (APA) to calculate the
accessibility probability between the worker and the task. The detailed process of calculating the accessibility probability
is shown in Algorithm3.

Risfti| |

o
[RilrR.] 1 [Ralral 1 [RslRe[Rr| [Re[Ro] |

Fig. 9. The R-tree structure.
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Fig. 10. Calculation of reachable zone. (a) Find the reachable circles of each task. (b) Merge all reachable circles.

Different from single-location tasks, there are multiple sub-locations in multi-location tasks. It is hard to calculate the
accessibility probability, because not only the distance between the sub-locations and the worker but also the distribution
of sub-locations impacts the accessibility probability.

To calculate it accurately, first, we introduce the reachable zone. In Fig. 10a, the reachable circle is the dotted circle
c(Is(t), dwin(w)), where the center is the sub-location k(t) and the radius is the willing distance of worker d;(w).

As long as the real location of worker I, is in the reachable circle, it indicates that the worker w can go to perform the task.
These reachable circles are combined to get the reachable zone Zone,, where Zone, = | J_, c;. If the worker w wants to perform
the task, the real location I, should be in Zone,. We can intersect Zone, and the worker’s confusion location circle c(1,,, €) to
get the shaded part Zone, in the Fig. 10b. That is, Zone, = Zone, nc(l,, €).

Since the real location of the worker I, appears with equal probability within the circle c([,, €), assume point g = (x,y) is
the possible real location of the worker, the pdf of q is as follows.

1 U
i, 4€ c(ly.€),
pdf(q) = { ") (10)
0, otherwise
Therefore, we use the following equation to calculate the accessibility probability of workers.

PT(d(W, t) < dwill(w)) = fonnep pdf(x>Y) dXdy

= 71— dxd
fflonep At(l’w.e) y (11)
_ AAZD,HEP
e(thy<)

where Pr(d(w, t) < dyu(w)) is the probability of worker who is reachable, pdf (x, y) is the pdf of g = (X,¥), Azone, is the area of
Zone,, and Ay, ) is the area of (L, €).
It is mathematically difficult to use conventional tools to calculate Az, SO We approximate the circle as a regular 64-gon.

When merging and intersecting polygons, we calculate the vertexes of the new polygon. According to the shoelace theorem,
we can calculate the area of the polygon using the following equation.

1
s—1 (12)

n
inJ’m — XY
i1
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Algorithm3 Area Probability-based Algorithm
Input: W(t), L(t), o
Output: W (t)
1: Initialize empty list C
2: for w; € W.(t) do
for Is(t) € Ls(t) do
Add c(Is(t), dyi(w)) to C
end for
Zone, =Merge(C)
Zone, = Zone; N c(l,,, €)
pi = AZonep /Ac(l",v,e)
9: if p; < a then

A

10: Remove w; from W (t)
11: end if
12: end for

13: Sort W,(t) in descending order by p
14: return W(t)

For each candidate worker of the task, the SC server uses Eq. (11) and Eq. (12) to calculate the accessibility probability,
and sorts W(t) in descending order by probability. Workers with low probability are filtered out by setting the probability
threshold o.

Monte Carlo Probability-based Algorithm. Because there is no efficient mathematical algorithm for merging and intersect-
ing polygons, it is time-consuming to calculate Az, in Eq. (11). In order to solve this problem, we introduce the Monte Carlo
Probability-based Algorithm (MPA) to evaluate the probability by using the Monte Carlo algorithm instead of calculating the
area of the reachable zone. The Monte Carlo algorithm is a method to estimate the probability through a large number of
simulation experiments. As shown in Algorithm4, K sampling points are randomly selected in the worker’s confusion circle
c(l,, €). K is the sampling number, and each sampling point is recorded as I By calculating how many points meet
d(l,t) < dywiu(w), we can calculate the accessibility probability of workers with the following equation:

_ Rlid(, t) < dwin(w)}|
K

where Pr(d(w,t) < dyi(w)) is the probability that the task is reachable for the worker, and [{l|d(l, t) < dyu(w)}| is the number
of points where the distance from the sampling point to the task is less than the willing distance of worker.

Pr(d(w, t) < dyi(w))

(13)

Algorithm4 Monte Carlo Probability-based Algorithm

Input: W (t), t, K, o
Output: W(t)
1: Initialize empty list C, count = 0, count, =0
2: for w; € W((t) do
while count < K do
Randomly generate [; € c(l,,, €)
Calculate d(l;, t), count + +
if d(l;,t) < d,y(w) then
countg + +
end if
end while
10:  p; = count,/K
11: if p; < o then

w

LONDD A

12: Remove w; from W(t)
13: end if
14: end for

15: Sort W,(t) in descending order by p
16: return W,(t)
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4.4.3. Expectation-based algorithm

The above algorithms only consider the accessibility probability of the worker to the task. They ignore the distance
between the worker and the task. In this section, we calculate the distance expectation between the worker and the task
Exp(d(w,t)) and combine both distance expectation and accessibility probability as the ranking metric. We propose an
expectation-based algorithm to take both probability and distance into consideration.

Similar to Eq. (11), we can use the following equation to calculate the distance expectation between the worker and the
task.

Exp(d(w,t)) :/./c(r 0 d(x,y,t)dxdy (14)

where the point q is the possible real location of the worker, d(x,y, t) is the distance between the point g = (x,y) and the task
t.

However, owing to the multi-location task, it is hard to find the distance function between the point q and the task t. Dif-
ferent from MPA, we propose the Monte Carlo Expectation-based Algorithm (MEA) to estimate the distance expectation
between workers and tasks.

In MEA, K sampling points ! are randomly selected, and the sampling range is in c(1,,, €). As shown in Algorithm5, the SC
server calculates the distance d(I, t) from each point to the task and uses Eq. (13) to calculate the accessibility probability. The
workers with low accessibility probability can be screened out by setting the threshold. The distance expectation Exp(d(w,t))
from the worker to the task can be calculated as follows.

k

> d(l;, )

Exp(d(w,t)) = =1 —

K (15)

where ZLd(li, t) represents the sum of the distances from each sampling point to the task. We combine expectation and
probability as ranking metric:

rank = Pr(d(w,t)) + q/Exp(d(w, t)) (16)

where g controls influence of the expectation on rank.

rank is positively correlated with Pr(d(w, t)) and negatively correlated with Exp(d(w,t)).

We use ranking threshold g to filter unreachable workers effectively. Finally, the SC server sorts the candidate worker set
according to rank.

Algorithm5 Monte Carlo Expectation-based Algorithm

Input: W (¢t), t, K, p
Output: W (t)
1: Initialize empty list C, D = 0, count = 0, count, = 0
2: for w; € W((t) do
while count < K do

Randomly generate I; € c(l;,, €)

Calculate d(l;, t), D+ = d(l;, t), count + +

if d(l;, t) < dy(w) then

countg + +

end if
end while
10:  p; = countq/K, Exp; = D/K, rank; = p; + 50/Exp;
11: if rank; < g then

w

LoONDUI R

12: Remove w; from W(t)
13: end if
14: end for

15: Sort W,(t) in descending order by rank
16: return W(t)

4.5. Task allocation

After sorting candidate worker set by the above rank metrics, the candidate worker set W,(t) is in order. In the task allo-
cation stage, the SC server pops out the first worker w in W,(t) and sends the task information of t to the worker w. After
receiving the information, the worker w judges whether the distance to the task is within the willing distance, that is,
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d(w, t) < dyiu(w). If so, the worker w accepts the task t. Otherwise, the worker rejects the task, and the SC server continues to
send the task information to the next candidate worker and repeats the above process until there is no candidate worker in
W..

Algorithm6 Task Allocation Algorithm
Input: W (¢), t

Output: asm(w, t)

1: while (W.(t)| > 0 do

2: Popw

3: if w accepts t then
4: Generate asm(w, t)
5: return asm(w, t)
6: end if

7: end while

8: return NULL

Theorem 2. The time complexity of MAPP is O(mlog (n)) + O(mN) + O(mNlog(N)) + O(mN), where m and n are the number
of tasks and workers, respectively, and N is the average number of candidate workers for each task.

Proof. In Constructing Candidate Worker Set stage, the SC server uses R-tree to index workers. The time complexity for
searching in the R-tree for all the tasks is O(mlog (n)). In Sorting Candidate Worker Set stage, the SC server needs to calculate
ranking metrics for all the candidate workers of each task. So, the time complexity is O(mN). Besides, the SC server needs to
sort the candidate workers, the time complexity of quicksort is O(mNlog(N)). In Task Allocation stage, the worst case is that
each candidate worker-task pair needs to be confirmed. The time complexity is O(mN). Hence, the time complexity of MAPP
is O(mlog (n)) + O(mN) + O(mNlog(N)) + O(mN).

5. Experiment

In this section, we evaluate the performance of MAPP in terms of utility, average error and overhead. We carry out an
extensive evaluation of our method in Section 5.1, and report experimental results with our system prototype in Section 5.2.

5.1. Experimental setup

5.1.1. Datasets

We choose a section of Beijing as the experimental area. The latitude range of the area is about 39.8265 to 39.9824 and
the longitude range is about 116.2732 to 116.4923. We choose three different types of datasets to evaluate the performance
of MAPP.

Real World Dataset (RWD). We use the GeolLife dataset [36] as our first dataset. The dataset collects GPS track information
of 182 users for more than 5 years, a total of 17621 track information. Each track information includes latitude, longitude,
altitude, and so on. In addition to daily life of users such as going home, these tracks also include some entertainment and
sports activities, for example, sightseeing, shopping, cycling, etc. Fig. 11 shows the distribution of the dataset.

We keep trajectories that are completely in the experimental area. Then we randomly select start points from part of
them to generate locations of workers, and randomly select some points as the locations of tasks. Due to population aggre-
gation, user activities in the upper left corner of Fig. 11 are more concentrated than other areas.

Artificial Uniform Dataset (AUD). In this dataset, we uniformly generate data points in the experimental area as locations of
workers or sub-locations of tasks.

Artificial Non-uniform Dataset (AND). There are no workers or tasks in many areas of the city, such as mountains, lakes,
military control zones, etc.

In AND, we randomly select three circles as obstacles, with (39.9332°N, 116.3483°E), (39.8926°N, 116.3490°E),
(39.8831°N, 116.4606°E) as the center respectively and 2000 meters as the radius. The location points in the other parts
are still generated uniformly.

Fig. 12 shows that the distribution of three datasets are different. The real-world dataset is the most uneven. Workers and
tasks are concentrated in the upper left area in Fig. 12a, which is also close to real-life (task points and workers are concen-
trated in business districts and residential areas). The artificial datasets are shown in Fig. 12b and Fig. 12c. Because there are
three circular areas without workers and tasks in Fig. 12¢, AND is more uneven compared with AUD in Fig. 12b.
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Fig. 12. Comparison of three kinds of datasets. The number of both workers and tasks are set to 150, and each task contains two sub-locations. (a) Real

World Dataset. (b) Artificial Uniform Dataset. (c) Artificial Non-uniform Dataset.
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Table 2
Parameter Setting.
Parameter Range Default Value
[W/|/|T| {0.5,0.75,1.0,1.25,1.5} 1.0
IT| 800
|Ls(t)] {2,3,4,5,6} 4
€ {2000, 2400, 2800, 3200, 3600} 2800
dyin(w) {800,900,1000, 1100, 1200} 1000
o {0.00,0.05,0.10,0.15,0.20} 0.05
K {5,10,15,20, 25} 15

5.1.2. Parameters

As Table 2 shows, we vary the ratio of workers and tasks |W|/|T| € {0.5,0.75,1.0,1.25,1.5}, the number of sub-locations
ILs(t)| € {2,3,4,5,6} for each task. We set the number of tasks |T| to 800, the privacy level € e {2000,2400,2800,
3200,3600}, the willing distance d,,;(w) € {800,900,1000,1100,1200}, the threshold of probability o € {0.00,0.05,0.10,
0.15,0.2}, and the sampling number K € {5,10, 15,20, 25}, where the bold values are the experimental default values. After
our pre-test, we set g as 50 and the rank threshold g = o +50/(1.15 x dyi(w)) which can effectively filter unreachable
workers.

5.1.3. Performance metrics

Utility. The utility is measured by the number of task assignments. Due to the confusion of location, it may lead to the
decline of assignments. The goal is to maximize the utility.

Average Error. The average error is measured by the workers’ rejections per assignment. It indicates the calculation accu-
racy of accessibility between workers and tasks.

Overhead. The overhead is measured by the task allocation time, which shows the system cost of the SC server.

5.2. Experimental results

We compare the performance of various algorithms in our experiments. Due to location confusion, there is a deviation
between the real location and the confused location of workers. We compare the Distance-based Algorithms that uses con-
fused location (Distance-based Algorithm, DA) and real location (Distance-based Algorithmusing real location, DA-R).
Besides, the Area Probability-based Algorithm (APA), the Monte Carlo Probability-based Algorithm (MPA) and the Monte
Carlo Expectation Algorithm (MEA) are also compared in our experiment.

As far as we know, there is no research on the MLTAP problem. We choose DA as the baseline algorithm. Since DA-R uses
the real location of workers, it is easy to calculate the accurate distance between the worker w and the task t. DA-R is the best
algorithm in theory, so we choose DA-R as the optimal algorithm to evaluate performance of our algorithms.

5.2.1. Impact of the ratio of workers and tasks

First, we explore the impact of the ratio of workers and tasks |W|/|T| on various performance metrics. It can be seen from
Fig. 13 that the utility increases with |W/|/|T|. However, after |W|/|T| reaches 1, the utility does not increase significantly. We
find that the utility of APA, MPA and MEA are close to the utility of DA-R and much higher than the utility of DA.

The Fig. 14 shows that the average error of DA-R is 0. Because the SC server knows the true location of all workers, the
accessibility between workers and tasks can be calculated accurately. With the increase of |W|/|T|, the average error fluctu-
ates in a certain range, which shows that |W|/|T| has little effect on the average error. The average error of DA-R, APA, MPA
and MEA are close but far better than DA.

As shown in Fig. 15, as |W|/|T| increases, so does the overhead. Because there is no efficient mathematical algorithm for
APA, it is time-consuming to calculate the proximity between workers and tasks. The overhead of APA is much higher than
other algorithms.

5.2.2. Impact of the number of sub-locations

As shown in Fig. 16, with the increase of |Ls(t)|, the utility of DA-R, APA, MPA and MEA are almost unchanged. The utility of
MEA is slightly lower than other algorithms, but much higher than the utility of DA. It is noted that in DA, the utility
increases with the increase of |L;(t)|. The reason is that when |L;(t)| increase, the reachable zone also increases. More workers
will enter the candidate worker set, which improves the possibility of successful allocation.

According to Fig. 17, the average error decreases with the increase of |Ls(t)|. This is because when |L(t)| increases, the
reachable zone expands, which increases the fault tolerance of each algorithm and reduces the average error. When |L(t)]
increases, the gap between DA and other algorithms decreases. When the participants in the dataset are more concentrated,
the average error of DA decreases faster.

Fig. 18 shows that with the increase of |L;(t)|, the overhead of all algorithms are increasing.
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Fig. 13. Impact of the Ratio of Workers and Tasks on the Utility. (a) Real World Dataset. (b) Artificial Uniform Dataset. (c¢) Artificial Non-uniform Dataset.
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Fig. 14. Impact of the Ratio of Workers and Tasks on the Average Error. (a) Real World Dataset. (b) Artificial Uniform Dataset. (c) Artificial Non-uniform
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Fig. 15. Impact of the Number of Workers on the Overhead. (a) Real World Dataset. (b) Artificial Uniform Dataset. (c) Artificial Non-uniform Dataset.
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Since the worker submits the confused location instead of the real location to SC server, the distance between workers

and tasks is hard to calculate.

According to Fig. 19, with the increase of €, the utility of DA-R, APA, MPA and MEA remain stable. When the location of SC
participants is concentrated, the effect of MEA is slightly worse than that of other algorithms. However, the utility of DA
decreases with the increase of privacy level. This is because when € is greater, it is more difficult to judge accessibility, result-

ing in the decrease of the utility.

In Fig. 20, with the increase of €, the average error of all algorithms except DA increases slightly. The average error of DA is
the highest and increases fast. It shows that our algorithms can provide stable services when € increases.
As can be seen from Fig. 21, € has little effect on the overhead of algorithms except APA.
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The experiments above show that there is a trade-off between the privacy level and average error. The higher the privacy
level, the higher the worker’s privacy can be protected. However, it will affect the calculation accuracy of accessibility
between workers and tasks, which leads to more task allocation errors.

5.2.4. Im

pact of the willing distance

Fig. 22 shows that the utility of DA-R, APA, MPA and MEA increases slightly when d,,;(w) is increased. This is mainly
because the candidate worker set for each task is expanded. As d,;(w) increases, the reachable zone of each task also
expands, which increases the fault tolerance and utility of DA, but there is still a large gap with other algorithms.

Fig. 23 shows that with the increase of d,,;(w), the average error of each algorithm decreases, and DA decreases the fast-
est. When d,i;(w) reaches 1400 meters, the average error are close with each other.
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Fig. 24 shows that when increasing d,;;(w), the overhead of APA is still in high level.

5.2.5. Impact of the probability threshold
As shown in Fig. 25, when « increases, the utility of APA, MPA and MEA decrease significantly. It indicates that when « is
less than 0.1, there are enough reachable workers in the candidate worker set. But when o is greater than 0.1, reachable
workers are not enough for task allocation.
Fig. 26 shows that when « increases, the average error decreases slightly, which shows that o affects the average error.
This is mainly because some low probability candidate workers are screened out and reduce the possibility of errors. But at
the same time, some reachable workers are also be screened out. Therefore, it is necessary to find the compromise «, which
can not excessively lose utility, and can not make the average error at a high level.
As can be seen from Fig. 27, when « increases, the overhead fluctuates.
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5.2.6. Impact of the sampling number

As can be seen from Fig. 28, when K is less than 10, the utility increases with K, and after K reaches 10, the utility remains

stable.
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Fig. 29 shows that when K increases, the average error of MPA and MEA fluctuate, but remain basically stable.
It can be seen from Fig. 30 that when K increases, the overhead increases.

5.2.7. Summary

According to the above experiments, we found that when workers and tasks are located evenly, APA, MPA and MEA per-
form relatively similar in terms of utility and close to optimal. When workers and tasks are concentrated, MEA is inferior to
the other two algorithms in utility, but far higher than baseline algorithm. MEA usually outperforms in terms of average
error, and MPA and APA perform much better than baseline algorithm. The overhead of APA is higher than other algorithms

due to the calculation of area.

674



Y. Fan, L. Liu, X. Zhang et al. Information Sciences 619 (2023) 654-678

[ TESrrTEr E—— SSRREIIEE Co—
TR TR
600 600 . w600 - T
N A Y
.4?400 h 4? \\\ 4? \“\
= A T 400 A5 400 A
o} o) o}
200 200 200
4 APA -+~ MEA & APA - MEA 4 APA -~ MEA
MPA MPA MPA
%.00 005 010 015 020 %.00 005 010 015 020 %00 005 010 015 020

Probability Threshold Probability Threshold Probability Threshold

(a) (b) ()

Fig. 25. Impact of the Probability Threshold on the Utility. (a) Real World Dataset. (b) Artificial Uniform Dataset. (c) Artificial Non-uniform Dataset.

614 & APA -~ MEA 61 A=-m-ne=2g =-==22T A L Acmmzzmoe
Ao "\\ MPA e " N T . —'#————7-——1\:\_\\%— ________ =+
g4 \\‘\ £ 4 g4
Wi | e wi y U w e
o . . ) A | T A
o g A O o
o T O )
g g2 g
< < <
& APA -+ MEA & APA + MEA
0 0 MPA 0 MPA
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Probability Threshold Probability Threshold Probability Threshold

(a) (b) (c)

Fig. 26. Impact of the Probability Threshold on the Average Error. (a) Real World Dataset. (b) Artificial Uniform Dataset. (c¢) Artificial Non-uniform Dataset.

300 APA B MEA APA B MEA = APA B MEA
MPA 200 MPA 250 MPA

200

S 200 ? 150 ®
g g £1s0

] 9100 g
3100 3 3 100
50 50

0

0.0 0.05 0.1 0.15 0.2 0.0 0.05 0.1 0.15 0.2

Probability Threshold Probability Threshold Probability Threshold

(a) (b) (c)

Fig. 27. Impact of the Probability Threshold on the Overhead. (a) Real World Dataset. (b) Artificial Uniform Dataset. (c¢) Artificial Non-uniform Dataset.
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By comparing with the effect of the optimal and baseline algorithms, we found that our algorithms perform well in var-
ious performance metric and are effective and efficient.

6. Conclusion

Aiming at the MLTAP problem, we propose the Multi-location task Allocation framework with Personalized location

Privacy-protecting (MAPP) in this paper. MAPP can assign appropriate workers to multi-location tasks and protect location
privacy of workers from being leaked by untrusted servers.

In order to protect workers’ location privacy, MAPP randomly confuses the real location of workers and converts it into a
circle. To allocate task efficiently, MAPP uses the MBR and the R-tree to determine the candidate worker set of the task. To
eliminate the location deviation caused by location confusion, we combine accessibility probability and distance expectation
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as ranking metric to evaluate the proximity of each candidate worker to the task and sort workers according to the rank. The
experiments prove that the proposed algorithms are effective and efficient.
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