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Abstract
With the development of wireless power transportation technology, wireless rechargeable sensor networks (WRSN) are 
widely used. To prolong the lifetime of WRSNs and make sure the completion of the long-time tasks, mobile charger (MC) 
is scheduled to charge sensor nodes wirelessly and prolong their lifetime. Existing studies typically assume that the charging 
power is fixed, which is unreasonable in real scenarios because current chargers can adjust the charging power. In this paper, 
we take adjustable charging power into consideration and propose the power level aware charging schedule (PACS) prob-
lem, which is proved to be NP-hard. To solve the PACS problem, we discretize the network area into several grids. Then we 
reformulate PACS as a monotone submodular optimization problem and propose an effective algorithm to solve it. Finally, 
we conducted experiments to evaluate our scheme. The experiment results show that our algorithm achieves better perfor-
mance than the comparison algorithms by at least 25.42% and 10% on average in terms of charging utility and survival rate.

Keywords  Wireless energy transfer · Wireless rechargeable sensor network · Adjustable charging power · Mobile charger 
scheduling

1  Introduction

Recently, wireless sensor network (WSN) is widely 
employed in surveillance [1] and maintenance system [2], 
message transportation [3] and so on. However, two major 
restrictions hinder further applications of WSN. First, the 
energy capacity of sensor nodes is limited. Second, the 
energy consumption rates of sensor nodes are different, 

which depend on the number of the events monitored around 
them. To prolong the lifetime of WSN, mobile chargers 
(MC) were introduced into WSN to charge sensor nodes 
and wireless rechargeable sensor network (WRSN) [4] came 
into being.

Benefited from the development of wireless power trans-
portation (WPT) technology [5], MC can use WPT to charge 
sensor nodes wirelessly. There has been much effort devoted 
to optimize the charging performance of WRSN, such as 
minimizing charging time, reducing dead number of sensor 
nodes, etc [6–8].

Depending on how many sensor nodes can be charged 
simultaneously, the charging mode can be divided into two 
categories : one-to-one charging model [9] and one-to-many 
charging model [10]. Wu et al. and Ye and Liang [11–13] 
studied the MC scheduling with one-to-one charging model. 
One-to-one charging schedule problem is usually formulated 
into the classical or variant Travelling Salesman Problem 
(TSP) [14]. In sparse sensor network, the one-to-one charg-
ing method can ensure the survival rate of nodes. However, 
for dense sensor network, one-to-one charing model is not 
efficient. In the contrary, MC with one-to-many charging 
model can charge multiple sensor nodes within the charg-
ing radius simultaneously. Liu et al. [7] used one-to-many 
charging model to optimize the survival rate of sensor nodes 
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and the effectiveness of energy usage to improve the life-
time of WRSN. Priyadarshani et al. [15] took spatial fea-
ture, remaining energy and the number of request nodes into 
account to improve reliability of WRSN.

The existing studies typically assume that the charging 
power of MC is fixed. In real scenarios, current MC has the 
ability to adjust power [16–18], while existing algorithms 
do not take advantage of it.

To improve the energy utilization rate of MC, in this 
paper, we take MC with adjustable power into consideration 
and formulate power level aware charging schedule (PACS) 
as an optimization problem. We comprehensively consider 
the charging position, charging time and charging power of 
MC, that are not considered by the existing research. When 
the charger receives several charging requests, we need to 
jointly optimize its charging place and power level to maxi-
mize charging utility. At the same time, it should be ensured 
that the charger has enough power to return back to Base 
Station (BS).

In the process of solving the PACS problem, we face the 
following challenges:

•	 First, charging utility is nonlinear about the distance 
between sensor node and charger. Meanwhile, different 
charging power also affects charging utility, which makes 
PACS complicated.

•	 Second, MC can be scheduled to move in the continuous 
network area and the PACS problem has infinite solution 
space. Thus it is difficult to find out several reasonable 
charging positions.

•	 Third, even if the charging positions are determined, how 
to select suitable charging time to maximize charging 
utility and reduce the number of dead nodes is also a hard 
problem.

To tackle the aforementioned challenges, we discretize the 
network area and formulate the PACS problem as a mono-
tone submodular optimization problemm, which is proved 
as NP-hard. Then we design a power level aware charging 
schedule algorithm to maximize the charging utility. In sum-
mary, the main contributions of this paper are as follows:

•	 The existing works assume MC with fixed power, which is 
unreasonable in real scenarios. We propose the power level 
aware charging schedule (PACS) problem and formalize it.

•	 We prove that the PACS problem is a monotone sub-
modular optimization problem, which is proved as NP-
hard. Thus, we present an area discretization method and 
propose a greedy algorithm to solve it.

•	 Finally, we conduct experiments to prove that our scheme 
can improve the energy utility rate of MC than other typi-
cal algorithms and guarantee a high survival rate about 
sensor nodes.

The rest of this paper is organized as follows: we first review 
the related work in Section II. Section III introduces the for-
malization process of PACS. Next, we propose a power level 
aware charging schedule algorithm in Section IV. Finally, 
we conduct extensive experiments and provide experimen-
tal results and conclusions in Section V and Section VI 
respectively.

2 � Related work

To prolong the lifetime of WRSN without losing flexibility, 
researches about different chargers and scheduling method 
have been studied many years. At present, most of exist-
ing technologies adopt wireless charging device equipped 
with WPT because of its convenient, maneuvering, easy to 
expand in performance and so on. In this section, we intro-
duce these works from three aspects: charging model, charg-
ing way, schedule method.

2.1 � One‑to‑one and one‑to‑many charging model

We can divide mobile chargers into two types according to 
the number of sensor nodes that can be charged simultane-
ously. There are two wireless charging models: one-to-one 
charging and one-to-many charging.

In one-to-one charging model, the charger can only 
charge one sensor node at the same time, Tomar et al. [19] 
proposed an effective path planning algorithm to maxi-
mize charging utility according to fuzzy logic. In [20], the 
network was divided into several regions according to the 
proposed partitioning algorithm based on the minimum 
spanning tree to minimize the energy consumption. How-
ever one-to-one charging model is inefficient to charge mul-
tiple sensor nodes. To reduce the number of dead nodes and 
improve charging efficiency, one-to-many charging has been 
put forward [10].

In one-to-many charging model, charger can charge a set 
of sensor nodes simultaneously within its charging radius. 
Rao et al. [21] scheduled charger to maximize charging util-
ity while satisfying deadline constraint. Xu et al. [6] con-
sidered simultaneous scheduling of multiple chargers and 
propose a novel longest delay minimization algorithm. How-
ever, these studies did not consider that the charging power 
can be adjusted to save energy.

2.2 � Full and partial charging way

According to how much energy the charger releases, there 
are two charging ways: full charging and partial charging.

In full charging, sensor nodes are fully charged every time 
after they issue charging requests. Lin et al. [22] took tem-
poral and spatital feature into consideration and designed 
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a global optimization algorithm. In addition, Chen et al. 
[23] combined charging node selection with dispatch path 
feasibility, which took into account the moving cost about 
different locations and energy-driven charging priority to 
ensure the charging efficiency. Full charging can guarantee 
the long-term reliability of the charged node. However, long 
charging time may cause other nodes to die without being 
charged.

In order to improve survival rate of sensor nodes, partial 
charging is proposed. In partial charging, sensor node can 
be charged multiple times to reduce charging delay. More 
flexible energy allocation of MC can also improve survival 
rate. However, unreasonable charging schedule may cause 
low charging utility and spend too much energy on travel. 
Thus, how to determine the charging time becomes very 
important. Xu et al. [24] improved the lifetime of nodes by 
shortening the moving distance of the charger. A Multi-node 
Time-Space Partial Charging algorithm is proposed in [7] to 
minimize the number of dead nodes and maximize energy 
efficiency.

2.3 � Static schedule and non‑static schedule

In WRSN, there are two schedule methods: static schedule 
and non-static schedule.

In terms of static schedule, the chargers are placed in 
some charging positions calculated in advance according 
to the optimization goal. Li et al. [25] formulated the prob-
lem with a specific stay-move behavior pattern and deploy 
charger to minimize the charging service budget. In [26], 
Wang et al. took obstacles into consideration and use dis-
cretization method to solve it.

Non-static schedule means dynamically determining 
charging strategies according to the status of sensor nodes. 
Soni and Shrivastava [27] used reinforcement learning tech-
nique to optimize the routing energy loss and the energy 
consumption of mobile WSN. To respect the diversity of 
needed energy, Ye and Liang [13] advocated MC scheduling 
driven by collaborative tasks. Lin et al. [28] considered the 
temporal and spatial collaborative charging with multiple 
charger scheduling to prolong the lifetime of sensor nodes.

All the above works assume that the power of charger is 
fixed, which is inconsistent with the fact. However, adjust-
able power has been applied to many fields. Estepa et al. [29] 
used IoT devices with adjustable transmit power to compose 
WSN to different power to transmit different packages in 
order to reduce energy consumption. Dai et al. [30] pro-
posed a charger deployment scheme for wireless chargers 
with electromagnetic radiation safety concern according to 
different power. Li et al. [31] took both the charging time 
periods and the adjustable power into account to prolong 
the wireless static charger’s working time. In this paper, we 
propose the power level aware charging schedule (PACS) 

problem and take the adjustable power into consideration to 
improve the energy utilization of MC.

3 � Problem modeling

In this section, first we introduce our network and charging 
model, charging utility model and then formulate the prob-
lem about PACS. The symbols and definitions in our paper 
are listed in Table 1.

3.1 � Network and charging model

As shown in Fig.  1, there are N static sensor nodes 
O = {o1, ..., on, ..., oN} ( 1 ≤ n ≤ N  ) distributed in a 2D 
plane Ω . We also use on to denote the location of the sensor 
node in Ω . MC is equipped with multiple levels of power 
P = {P1, ...,Pi, ...,Pl} ( 1 ≤ i ≤ l ). When some sensor nodes 
issue charging requests, MC will start from base station to 
charge these nodes and return back before it exhausts energy.

In this paper, one-to-many charging model is adopted and 
we specifically use the WISP-reader charging model [32]. 
When MC moves to the charging position pk , the receving 
power Pn

k,i
(d(on, pk),Pi) of sensor node on can be calculated 

as below:

where d(on, pk) denotes the distance between the sensor node 
on and the charging position pk . Ri is the maximum charg-
ing radius, which is related to the i-th level of source power 
Pi of MC [33]. � and � are two predetermined constants 
depending on surrounding environment and hardware set-
tings of MC.

3.2 � Charging utility model

To judge the efficiency of charging, we present the charg-
ing utility Uk(Qk, Tk,Pi) of charging position pk with source 
power Pi as:

where Qk denotes the total received energy. Tk is the charg-
ing time after MC moves to the k-th charging position pk . rk 
and c represent the travel time and the moving cost per unit 
time respectively.

Because of one-to-many charging model, all the sen-
sor nodes within the charging radius Ri can be charged 
simultaneously. In practice, the charging power Pn

k,i
 of fully 

(1)Pn
k,i
(d(on, pk),Pi) =

{
𝛼

(𝛽+d(on,pk))
2
× Pi d(on, pk) ⩽ Ri

0 d(on, pk) > Ri

(2)Uk(Qk, Tk,Pi) =
Qk

Tk × Pi + rk × c
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charged node on typically has an upper bound, which is 
equal to the energy consumption rate Cn of sensor node. 
Moreover, to improve the survival rate of sensor nodes, 
we assign the charging weight w to dead node ( En=0) to 
ensure that it can be charged as early as possible. Thus the 
received energy qn of sensor node on is:

(3)qn =

⎧⎪⎨⎪⎩

w × Pn
k,i
× Tk En = 0

Pn
k,i
× Tk 0 < En < En

max

Cn × Tk En = En
max

where Pn
k,i

 and Cn are the receiving power and consuming 
rate of the sensor node on respectively. Tk is the charging 
time at charging position pk . w is the charging weight when 
the sensor node on is dead.

Then we can get the total received energy Qk of nodes 
within charging radius Ri at the charging position pk as 
follows:

where d(on, pk) < Ri denotes that sensor node on is located 
within the i-th level of charging radius Ri.

3.3 � Problem formulation

Our goal is to maximize the energy utility of charging while 
MC cannot run out of energy during the charging periods. 
When MC receives charging requests from sensor nodes, it 
should select optimal charging positions and power levels 
according to the optimization goal. Thus the power level 
aware charging schedule (PACS) problem can be formulated 
as:

s.t.

(4)Qk =
∑

d(on,pk)<Ri

qn

(5)max

K∑
k=1

Uk(Qk, Tk,Pi)

Table 1   Symbols and 
Definitions

Symbols Definitions

on The n-th sensor node
pk The k-th charging position in Ω
d(on, pk) The distance between sensor node on and charging position 

pk

�, � Constants in the charging model
Pi The i-th level of charging power
Ri The i-th level of charging radius
Pn
k,i

The received power of sensor node on with charing power 
Pi

Uk Charging utility at charging position pk
Ed Charging request threshold of sensor node
En
max

Energy capacity of sensor node on
Ec
max

Energy capacity of mobile charger
En Current energy of sensor node on
tn
k

Charing duration for charger to fully charge on at pk
Tk Charging duration for charger at pk
rk Traveling time for charger to move to pk
c The moving cost per unit time
qn Received energy of on within charging radius
Qk Total received energy of nodes within charging radius
Cn Energy consumption rate of on

Fig. 1   The scenario of mobile charging
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where Tk denotes the charging time at position pk . Pi is the 
i-th level of charging power. rk + rBS is the travel time from 
the current position to pk and then from pk to BS. c denotes 
the moving cost per unit time. Equation (6) ensures that MC 
can return back to BS at any point. And the received energy 
Qk should be less than the energy released by MC according 
to Eq. (7).

The theorem below shows the hardness of PACS.

Theorem 1  The PACS problem is NP-hard.

Proof of Theorem 1 We sketch the proof here due to space 
limit. Consider the special case where the charging radius 
Ri and the charging time Tk are fixed. Moreover, we suppose 
that the receiving power of node is constant. Then each node 
can be seen as a point, and the charging area can be seen as 
a disk. Therefore, the PACS problem can be transformed to 
the problem of identifying a tour of minimum travel cost to 
cover most points, which is exactly the geometric covering 
salesman problem [34]. Meanwhile, it is proved to be NP-
hard. Therefore, PACS is also NP-hard.

4 � Solution

In this section, we propose a power level aware charging 
schedule algorithm (PACSA) to maximize charging utility. 
The workflow of PACSA is shown in Fig. 2. First we present 
an area discretization method to reduce solution space. Then 
we discretize the charging power with guaranteed approxi-
mation ratio and use a greedy algorithm to solve PACS.

4.1 � Network area discretization

Because network area Ω is a continuous area, which implies 
that the number of the charging positions is infinite. Thus, 
we propose an area discretization method to reduce the solu-
tion space from infinite to finite. As shown in Fig. 3, we 
discretize network area into several grids with side of length 

(6)
K∑
k=1

(Tk × Pi + (rk + rBS) × c) ⩽ Ec
max

(7)∀Qk < Tk × Pi , ∀pk ∈ Ω

� and consider the intersections as the charging positions. 
Thus we obtain � =

⌈ |Ω|
�2

⌉
 grids and K = (� − 1)2 charging 

positions. The charging positions is denoted by 
S = {p1, ..., pk, ..., pK}.

4.2 � Charging power discretization

To reduce the computation overhead, we use a piecewise 
constant function P̃n

k,i
(lj,Pi) to discretize charging power as:

where l0 = 0, j ={1, ..., J} and lJ = Ri . Ri is the charging 
radius with the i-th level of charing power.

Take Fig. 3 as an example, the charging radius Ri is divided 
into three segments l1 , l2 , l3 . The received power of sensor 
nodes o3 located between l1 and l2 can be approximated to 
P̃n
k,i
(l2,Pi) . In the same way, each node located between lj and 

lj+1 has the same constant approximation power.
To bound the approximation error of piecewise constant 

approximation, we propose a constant threshold � and offer 

(8)�Pn
k,i
(lj,Pi) =

⎧⎪⎨⎪⎩

Pn
k,i
(l1,Pi) d = l0

Pn
k,i
(lj,Pi) lj−1 < d ⩽ lj

0 d > Ri

Network area
discretization

Problem
reformulation

et candidate
charging utility

Charging
schedulinglgorithm

Charging power
discretization

et coverage
set

Fig. 2   The solution workflow

Fig. 3   Network area and charging power discretization
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the sufficient condition to ensure that the approximation error 
is less than �.

Theorem 2  Setting l0 = 0, lJ = Ri and lj = �((1 + �)j∕2 − 1) 
( j = 1, ..., J − 1 ), the approximation error is subject to:

Proof of Theorem 2 The approximation error is proportional 
to the distance between the node and the charger. Thus we have 
lj−1 < d ⩽ lj , the maximum error can be calculated by 
Pn
k,i
(lj,Pi)

P̃n
k,i
(lj−1,Pi)

= 1 + �.

4.3 � Problem reformalization

After network area discretization, the charging positions are 
discretized from infinite to finite. Meanwhile we discretize the 
charging power with guaranteed approximation ratio and refor-
mulate the PACS problem as below:

s.t.

where,

We utilize charging power discretization and introduce 
Eq. (8) to further simplify the calculation and reformulate 
the problem. At the same time, we introduce the charging 
weights � for the dead sensor nodes and obtain Eq. (14). qn 
is the receiving energy of sensor node on within the charg-
ing redius.

(9)1 ⩽

Pn
k,i
(d,Pi)

P̃n
k,i
(d,Pi)

⩽ 1 + �

(10)max

K∑
k=1

Uk(Qk, Tk,Pi)

(11)
K∑
k=1

(Tk × Pi + (rk + rBS) × c) ⩽ Ec
max

(12)∀Qk < Tk × Pi , ∀pk ∈ S

(13)Qk =
∑

d(on,pk)<Ri

qn

(14)qn =

⎧⎪⎨⎪⎩

w × �Pn
k,i
(lj,Pi) × Tk En = 0

�Pn
k,i
(lj,Pi) × tTk 0 < En < En

max

Cn × Tk En = En
max

4.4 � Optimization problem analysis

After utilizing both network area and charging power discre-
tization, we found that the object function of PACS problem 
is a monotone submodular function about charging time.

Theorem 3 
∑K

k=1
Uk(Qk, Tk,Pi) is monotonously nondecreas-

ing submodular function for Tk.

Proof of Theorem  3  First, note that the set function ∑K

k=1
Uk(Qk, Tk,Pi) is the sum of a number of Uk(Qk, Tk,Pi) . 

Given two sets of selected charging positions � ′ , � ′′ and 𝜒 ′ ⊂ 𝜒 ′′ , 
we have 

∑𝜒 ��

k=1
Uk(Qk, Tk,Pi) >

∑𝜒 �

k=1
Uk(Qk, Tk,Pi) > 0 . Thus 

the objective function is nonnegative and monotone.
To prove the submodularity, we should prove the property 

of diminishing marginal utility in our formulated objective 
function [35]. We only need to compare the marginal utility 
ΔU

��

�
(Q� , T� ,Pi) =

∑� �� ⋂ s�

k=1
Uk(Qk, Tk,Pi) −

∑� ��

k=1
Uk(Qk, Tk,Pi) and 

ΔU
�

�
(Q� , T� ,Pi) =

∑� � ⋂ s�

k=1
Uk(Qk, Tk,Pi) −

∑� �

j=1
Uk(Qk, Tk,Pi).

We assume that MC finishes charging at p� ′ after time T 
and finishes charging at p� ′′ after time T + ΔT  . There are 
two cases according to the selection of the charging posi-
tion p� : 

1.	 When MC moves to p� , there is no sensor node that has 
been charged in � �� − � � . After charging time T� , we 
have ΔU��

�
(Q�, T�,Pi) = ΔU

�

�
(Q�, T�,Pi).

2.	 When MC moves to p� , there are sensor nodes that has 
been charged in � �� − � � . There is such a situation that 
the node within charging radius Rl has been fully charged 
during the charging time T� . When the node is fully 
charged, the max power it received is equal to its energy 
consumption rate Cn according to Eqs. (3) and (4), which 
lead to Q′′

𝜇
< Q

′

𝜇
 and ΔU��

𝜇
(Q𝜇, T𝜇,Pi) < ΔU

�

𝜇
(Q𝜇, T𝜇,Pi)

.

In summary, the set function 
∑K

k=1
Uk(Qk, Tk,Pi) is monoto-

nously nondecreasing submodular.

4.5 � Approximate algorithm

As demonstrated in the previous section, the PACS problem 
can be formulated as a monotone submodular optimization 
problem, which allows a greedy algorithm to achieve a good 
approximation [36]. The detailed algorithm of PACSA is as 
follows:
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After network area and charging power discretiza-
tion, the number of charging positions becomes finite. 
And the charging power is approximated to be constant 
in each segment. Consequently, we only need to con-
sider the coverage relationship between MC and sen-
sor nodes, which depends on different charging radii. 
Algorithm  1 shows how to get coverage sets of nodes 
�  . For example, suppose there are three charging radii 
R0 < R1 < R2 . When the distance d(on, pk) < R0 , we put 
on into the setk,0{on} , setk,1{on} , setk,2{on} . When the dis-
tance R0 < d(on, pk) < R1 , we put on into the setk,1{on} and 
setk,2{on} . When the distance R1 < d(on, pk) < R2 , we put 
on into setk,2{on} . Finally, we can obtain the coverage sets 
� = {set1,0, set1,1, set1,2, ..., setk,1, setk,2}.

Algorithm 2 describes the process of strategy selection 
for charging by implying a greedy algorithm. When MC 
receives the charging requests Q = {req1, req2, ..., reqm} 
(m ≤ N) , it can filter out the request coverage sets �R that 
contain charging request nodes. According to Eq. (14), the 
charging power has upper bound when the node is fully 
charged, which leads to the charging utility decrease. Thus 
the charging time Tk is based on the fastest fully charged 
node in the request coverage set. According to different 
power levels, we can calculate the corresponding charg-
ing utility. Moreover, we consider the moving cost on the 
travel and CanBack(pk) = 1 denotes that MC has the ability 
to return back to BS after charging. MC selects the charging 
strategy with the largest charging utility to charge according 
to greedy mind.

4.6 � Computational complexity

In this section, we analysis the computational complexity 
of our algorithm.

PACSA is composed of two algorithms: extracting cover-
age sets and calculating charging position and source power. 
Because the network (denoted by Ω ) is continuous, the num-
ber of the charging position is infinite. We propose an area 
discretization method to reduce the solution space. As shown 
in Fig. 3, we divide the area into � =

⌈ |Ω|
�2

⌉
 grids and get 

K = (� − 1)2 charging positions, where � is the side length 
of each grid. Then we traverse all the charging positions and 
sensor nodes to calculate the coverage sets. The number of 
power levels depend on the hardware setting of MC, which 
is a constant. Thus the time complexity of the first algorithm 
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of calculating coverage sets is O((
⌈ |Ω|

�2

⌉
− 1)2 × N) . When 

MC receives m charging requests Q = {req1, req2, ..., reqm} 
(m ≤ N) . Then we will traverse all the charging requests to 
filter the coverage sets and the time complexity is O(K × m) . 
In the worst case, the number of charging requests m is close 
to the number of sensor nodes N. Thus, the total time com-
p lex i ty  t aken  by  t he  p roposed  scheme  i s 
O((

⌈ |Ω|
�2

⌉
− 1)2 × N + K × m) and the worst time complexity 

is O((
⌈ |Ω|

�2

⌉
− 1)2 × N + K × N).

5 � Simulation experiments

In this section, we conduct experiments to evaluate the 
performance of PACSA. We compare PACSA with differ-
ent schedule schemes by analyzing the impact of different 
parameters.

5.1 � Evaluation setup

In our simulation, we use the ONE simulator [37] to conduct 
experiments on a system enabled with 16 GB RAM and 
AMD Ryzen 7 4800U processor. The ONE simulator is a 
typical simulation platform specifically for evaluating path 
planning algorithm. Meanwhile we add the charging model 
in [32] to simulate the charging process of MC. In our paper, 
we consider the WRSN consisting of 50 sensor nodes that 
are randomly deployed in a 200m × 200m square. For the 
location of sensor nodes, we consider two types of distri-
bution: uniform distribution and nonuniform distribution. 
The energy capacity of MC and sensor node are initialized 
Ec
max

= 2000KJ and En
max

= 50KJ respectively. MC has three 
power levels Pl = {50, 70, 90} . The charging request thresh-
old Ed = 30KJ . We set � = 100 , � = 50 in Eq (1). Moreover, 
the moving speed v of MC is 5m/s. Energy consumption rate 
of sensor node is random value in [0.1, 0.2]KJ∕s.

5.2 � Baseline setup

To evaluate the performance of PACSA, we choose the clas-
sical mTS [28] algorithm and state-of-the-art CSGP [15] 
algorithm for comparison. mTS considers the combina-
tion of the temporal requirement and the spatial feature of 
charging requests to make charging decisions. CSGP uses 
one-to-many charging model. It take spatial feature, remain-
ing energy and the number of request nodes into considera-
tion to make charging decisions. Then it proposed partial 
charging scheme to calculate each halting point. As there 
is no mobile charging schedule algorithm concerning the 
adjustable power at present, we also develop two comparison 
algorithms named Adjustable Power without Dead Priority 

(APDP) and Simple Greedy with Constant Power (SGCP). 
Different from PACSA, APDP only chooses the charging 
strategy with the highest charging utility in each iteration 
without considering the number of dead nodes. In SGCP, 
once the MC reaches the charging position, it releases 
energy with a fixed charging power. It’s way to calculate the 
charging utility and choose the charging strategy is same as 
PACSA. For each of the above algorithms, we performed it 
in two environments: (1) uniform environment: sensor nodes 
are distributed uniformly, and (2) nonuniform environment: 
sensor nodes are distributed nonuniformly.

5.3 � Evaluation results and analysis

Figure 4 shows the charging utility as time goes by. PACSA 
outperforms APDP, SGCP, mTS and CSGP. It can be 
observed that PACSA maintains a good stability in both 
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uniform and non-uniform distributions. Figure 5 shows the 
survival rate as time goes, we can find that PACSA can also 
maintain a good survival rate for sensor nodes. The survival 
rate of APDP and SGCP is lower than that of PACSA. This 
is because APDP does not consider dead nodes, SGCP does 
not take the adjustable power into consideration. Due to the 
partial charging scheme adopted by CSGP, more energy is 
wasted on the journey, which results in fluctuations in the 
survival rate of sensor nodes. In mTS, the survival rate of 
nodes drops rapidly with the time goes. 

1.	 Impact of energy capacity of sensor nodes En
max

 : To 
evaluate the impact of En

max
 on the charging utility and 

the survival rate, we increase the energy capacity of sen-
sor nodes from 50 to 100 in both uniform and nonuni-
form environment. As shown in Fig. 6, PACSA performs 
better than others in terms of Emax . The charging utility 
of APDP, SGCP, mTS and CSGP fluctuate uniformly 
as Emax grows, the charging utility of PACSA is always 
larger than them. Moreover, in the case of non-uniform 
distribution, the charging utility of PACSA is further 
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improved than others. Figure 7 shows that the survival 
rate of PACSA is always better than other algorithms. As 
the battery capacity of the charging node increases, the 
survival rate of sensor nodes becomes better. mTS and 
CSGP is relatively lower than others. This is because 
mTS and CSGP make MC waste too much power on the 
cost of travel.

2.	 Impact of the number of sensor nodes N : To evaluate 
the impact of N on the charging utility and the survival 
rate, we increase the number of sensor nodes from 50 to 
100. Figure 8 shows that on average, the charging utility 
of PACSA outperforms others as the number of sensor 

nodes increases. The charging utility of PACSA, APDP, 
SGCP and CSGP grows steadily as N increases because 
the one-to-many charging mode they use increases as the 
sensor nodes become denser. The charging utility of mTS 
increases slowly with small fluctuations because it uses 
one-to-one charging mode. Figure 9 shows that with the 
increases in the number of sensor nodes, the survival rate 
decreases. PACSA has the smallest trend of decreasing 
as the number of sensor nodes increases in both uniform 
and nonuniform environments. mTS and CSGP cannot 
satisfy multiple charging requests at the same time, so 
the survival rate of sensor nodes drops rapidly.
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3.	 Impact of energy capacity of charger Ec
max

 : To evaluate 
the impact of Ec

max
 on the charging utility and the sur-

vival rate, we increase the energy capacity of charger 
from 1000 to 6000. Figure 10 shows that on average, the 
charging utility of PACSA performs better than others. 
In nonuniform environment, PACSA can still maintain 
a good stability than other algorithms and improve the 
charging utility in nonuniform environment. Figure 11 

shows that the survival rate of sensor nodes varies with 
Ec
max

 . As the increase energy capacity of charger, the 
survival rate of PACSA is still better than APDP, SGCP 
and mTS. Since sensor nodes are denser in partial area 
under the nonuniform environment, the performance of 
APDP and SGCP are similar, and the CSGP becomes 
better than mTS because of adopting one-to-many charg-
ing model.
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6 � Conclusion

In this paper, we propose the power level aware charg-
ing schedule (PACS) problem in WRSN. We first formal-
ize PACS as an optimization problem, which is proved 
to be NP-hard. Then we utilize network area and power 
level discretization to reformulate PACS as a monotone 
submodular optimization problem and design an effective 
algorithm to solve it. Finally, we conduct experiments and 
show that our scheme achieves a better performance than 
existing algorithms in improving charging utility and sur-
vival rate. As our future work, we will focus on optimiz-
ing the computational complexity and taking the scenarios 
with restricted roads into account to further improve the 
charging utility.
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