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Abstract
Informed path planning is a type of algorithm that uses problem-specific knowledge, expressed as heuristics, to efficiently
discover an optimal path between a start and a goal state. The primary challenge in optimizing informed planning algorithms
lies in quickly finding the initial solution while minimizing collision checking costs. In this paper, an Obstacle-Sensitive
and Initial-Solution-first path planning algorithm (OSIS) is proposed. OSIS leverages historical collision check results to
construct an asymptotically accurate distribution of obstacles in space. Based on this distribution, OSIS employs a reusable,
inadmissible, yet more accurate heuristic that applies to the entire problem domain. Additionally, an initial-solution-first
path optimization strategy is proposed to eliminate unnecessary path optimization. It ensures that OSIS prioritizes exploring
uncharted spaces, leading to faster initial solution discovery. Experiments have demonstrated that OSIS outperforms existing
algorithms in navigating around obstacles, and achieving convergence in solution cost. Experimental data show that OSIS
can even improve the success rate of collision checking to more than 90% in the planning problems studied in this paper,
which far exceeds the performance of other algorithms.

Keywords Sampling-based path planning · Optimal path planning · Informed search · Collision check · Obstacle avoidance

1 Introduction

A path planning algorithm is a computational method
designed to determine a sequence of valid states from an
initial start location to a desired goal within a defined state
space, while avoiding any obstructions present within the
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space. Path planning algorithms have been applied in var-
ious fields such as robotics [1], unmanned aerial vehicles
(UAVs) [2], autonomous vehicles [3], and video games [4].
The objective of the planner is to promptly find an initial
solution and progressively converge it towards an optimal
solution.

Existing algorithms can be classified into two primary cat-
egories: search-based path planning and sampling-based path
planning. Search-based path planning algorithms, such as
Dijkstra’s algorithm [5], A* [6], D* Lite[7], and the latest
work like MOPBD* [8] use dynamic programming tech-
niques [9] to find solutions in discrete state spaces.

The solution quality of search-based path planning algo-
rithms depends on the granularity of space discretization.
Finer granularity improves solution quality but increases
computational overhead. In high-dimensional state spaces,
this overhead grows exponentially with the number of states,
a phenomenon known as the curse of dimensionality [10].

To overcome the limitations of the search-based algorithm
in continuous space, the sampling-based path planning algo-
rithm has been developed.

The RRT [11] algorithm is one of the most classical
sampling-based path planning algorithms, and RRT* [12]
is an asymptotically optimal improvement of it.
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Informed RRT* [13] introduces the informed search,
which uses known solutions to limit the optimal solution’s
range, thereby enhancing algorithm performance by reduc-
ing the sampling and search space.

Modern algorithms for informed path planning include
Batch Informed Trees (BIT*) [14], Advanced BIT* (ABIT*)
[15], Adaptively Informed Trees (AIT*) [16], and Effort
Informed Trees (EIT*) [17].

Path planning algorithms often incur significant collision
check overhead [18, 19], which should be minimized. How-
ever, existing informed algorithms do not effectively use
collision information, leading to redundant checks.

Meanwhile, most existing informed algorithms prioritize
path optimization through rewiring before finding the ini-
tial solution. This slows the discovery of the initial solution,
wastes computational resources, and increases the risk of
becoming trapped in local optima.

In response to the limitations of existing informed plan-
ning algorithms, this paper introduces the Obstacle-Sensitive
and Initial-Solution-first (OSIS) path planning algorithm.
OSIS leverages collision check results from previous search
processes to estimate the distribution of obstacles in the
environment. This information helps OSIS maneuver around
obstacles and minimizes unnecessary collision checks, thereby
enhancing search efficiency. Furthermore, OSIS prioritizes
the discovery of the initial solution as its primary objective.
To achieve this, OSIS defers rewiring processes that do not
directly contribute to finding the initial solution until after the
initial solution is found. This strategic approach allows OSIS
to quickly locate the initial solution and ignore extraneous
paths.

The contribution of this paper is as follows.

• AnObstacle-Sensitive and Initial-Solution-first informed
path planning algorithm (OSIS1) is proposed to copewith
the disadvantages of existing algorithms.

• OSIS estimates the distribution of obstacles in space by
analyzing historical collision check data. The planner
then employs this information to navigate the environ-
ment efficiently, evading obstacles when possible and
minimizing the incidence of collisions.

• OSIS optimizes the existing rewiring strategy to priori-
tize exploration of uncharted regions within the space. It
enables the planner to navigate rapidly away from poten-
tial local optima, thereby accelerating the search for the
initial solution.

The remainder of this paper is organized as follows:
Section 2 provides an overviewof the relatedwork in the field
of path planning algorithms. Section 3 presents the founda-

1 This paper is an extended version of the poster paper accepted by
The 29th IEEE International Conference on Parallel and Distributed
Systems (ICPADS 2023).

tional knowledge relevant to informed planning algorithms,
along with the mathematical model of the planning problem.
Section 4 details the implementation of OSIS. The experi-
mental results are presented in Section 5. Finally, Section 6
concludes this paper, summarizing the key findings.

2 Related work

2.1 Classical sampling-based path planning
algorithms

The RRT [11] algorithm is considered one of the pioneers of
sampling-based path planning. It works by randomly sam-
pling in space and growing a spanning tree based on these
random samples to find solutions. Since RRT growth is ran-
dom and disordered, it is not guaranteed that RRT will find
the optimal solution.

RRT-Connect [20] improves upon RRT by growing two
trees from the start and goal, finding a path when the trees
connect. RRT-Connect significantly outperforms RRT, but
remains non-asymptotically optimal. However, its bidirec-
tional search strategy has influenced many algorithms, such
as AIT* [16] and EIT* [17], and inspired asymptotically
optimal variants [21–24].

RRT* [12] uses a rewiring technique to ensure asymp-
totic optimality by updating the cost-to-come for tree nodes.
However, its random growth makes it inefficient in finding
the optimal solution.

RRT and RRT* utilize random geometric graph (RGG)
[25] theory to approximate the planning space by generat-
ing random samples in the space, which form graphs with
implicit edges that are used to find solutions. Since RRT
and RRT* generate only one sample in each iteration, the
construction and search of the RGG graph are performed
simultaneously, resulting in a randomized and unordered
anytime search.

Fastmarching trees (FMT*) [26] also employRGG theory
by generating a fixed number of samples at a time to con-
struct an RGG, which is then searched for solutions. FMT*’s
construction and search are not simultaneous, resulting in an
ordered but non-anytime search, which means that it cannot
return a solution at any point during the search.

2.2 Heuristic-based path planning algorithms

Sampling-based planning algorithms can use heuristics to
guide the planner’s search and improve the planner’s per-
formance, such as Sampling-based A* (SBA*) [27]. Heuris-
tics improve search efficiency by utilizing problem-specific
information, often in the form of a heuristic function that
estimates the cost of connecting any pair of vertices in the
graph. Those states that have lower heuristic cost-to-go and
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cost-to-come are generally more likely to optimize the solu-
tion.

A heuristic is considered admissible if it never over-
estimates the true cost, such as the Euclidean distance.
Conversely, an inadmissible heuristic is one that may over-
estimate the true cost. A suitable heuristic should be both
computationally efficient and as accurate as possible in esti-
mating the true cost, and some planners can update the
heuristic to improve its accuracy.

Heuristically-Guided RRT (hRRT) [28] is a heuristic-
based variation of RRT, which employs heuristics to direct
the growth of the tree. Although these algorithms improve
RRT’s performance, they lack the ability to constrain the
search space based on existing solutions.

FMT* does not use heuristics, and the Motion Planning
using Lower Bounds (MPLB) [29] is an anytime adaption of
FMT* that incorporates heuristics, but it couldn’t update the
heuristics dynamically.

2.3 Informed path planning algorithms

Gammell et al. introduced Informed RRT* [13] as an exten-
sion of RRT*, which led to the development of the concept of
informed planning. In informed planning, the optimal path
length can be bounded by an ellipse (ellipsoid) defined by the
length of the current path and the Euclidean distance between
start and goal. This approach allows the planner to narrow the
range of optimal solutions and eliminate states and edges that
cannot improve the solution, resulting in improved search
efficiency. However, Informed RRT* does not use heuristics
to guide the search.

Depending on the sampling pattern, the planner can be
either a single-sampling planner, which generates one sam-
ple at a time, or a batch-sampling planner, which generates
a batch of samples at once. The batch sampling planning
algorithm can build an approximation of the planning space
faster, so as to find the initial solution faster. FMT* can also
be viewed as a batch sampling algorithm, but FMT* only
generates a batch of samples in a planning process. BIT *
[14] can generate samples in multiple batches, so BIT * can
dynamically build a more and more accurate RGG approxi-
mation.

ABIT* improves the performance of BIT* by introducing
advanced graph search techniques. ABIT* incorporates two
factors, namely the inflation factor (εin f l ) and the truncation
factor (εtrunc), to guide its search. The εin f l factor inflates
the heuristic cost-to-go of edges, prioritizing the exploration
of edges with lower heuristic cost-to-go, so edges closer to
goal will be added to the tree first, which greatly improves
the efficiency of the search. On the other hand, the εtrunc
factor truncates the search, allowing the planner to initiate
the subsequent round of more precise search at the earliest
opportunity.

However, the heuristics of BIT* and ABIT* do not update
when a collision is detected, which makes the accuracy of
their heuristics plummet in some cases. Figure 5 (a) and (b)
illustrate a scenario where BIT* andABIT* exhibit poor per-
formance. Additionally, BIT* and ABIT* adopt a "greedy"
strategy to select the edge that is most likely to improve the
solution in the current situation for addition to the tree, which
makes themsusceptible to getting trapped in a local optimum.

AIT* leverages bidirectional search to compute a more
precise heuristic. It constructs a forward tree rooted at the
start and a reverse tree rooted at the goal, with the latter
ignoring collisionswith obstacles during its growth.The cost-
to-go heuristic of a state in the forward tree is equal to its
cost-to-come in the reverse tree. At each iteration, AIT* tries
to add the edge in the reverse tree that connects to the forward
tree and is most likely to improve the solution to the forward
tree, and if this edge collides with an obstacle, AIT* updates
the reverse tree using LPA* [30] . LPA* is an enhancement of
the A* algorithm that is designed to handle dynamic scenes,
where the positions of obstacles may dynamically change.
Unlike A*, LPA* does not require a complete re-search after
detecting a change in the environment, instead, it updates
only the relevant local path to quickly recompute the optimal
path.

However, the reverse tree of AIT* does not take into
account the collision with obstacles during its growth pro-
cess, leading to frequent updates of the reverse tree in
complex scenarios, as shown in Fig. 5 (c). As a result, while
AIT* can compute more accurate heuristics, the cost of
achieving such accuracy may be substantial.

EIT* is an extension of AIT* that addresses its limita-
tions through the use of effort heuristics and sparse collision
checks. The effort heuristic is an inadmissible heuristic that
estimates the computational effort needed to verify a path
from a state to a goal, based on the path length and colli-
sion check resolution. By incorporating effort heuristics and
sparse collision check, EIT* alleviates the problem of fre-
quent updates of the reverse tree that may result from AIT*
not considering collisions at all. The performance ofEIT*has
shown a significant improvement compared to AIT*. How-
ever, as illustrated in Fig. 5 (d), EIT* does not effectively
address the frequent "bumping into the wall" issue.

Although AIT* and EIT* can compute more accurate
heuristics, the computational overheadof suchheuristicsmay
be huge in some complex scenarios. In this case, these algo-
rithms actually transfer the overhead of the forward search
to the reverse search, but the overall search overhead is not
significantly reduced.

Existing informed algorithms do not effectively use past
collision data to guide the search.Moreover, these algorithms
apply the rewiring strategy for path optimization before locat-
ing the initial solution, which not only hinders initial solution
discovery but also leads to unnecessary overhead by optimiz-
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ing numerous irrelevant paths. This can potentially prolong
the process and trap the planner in local optima.

Based on these problems that exist in existing informed
programming algorithms, in this paper OSIS, a novel
informed planning algorithm that can efficiently identify and
bypass obstacles in space, find an initial solution and con-
verge to it, is proposed.

3 Problemmodeling and preliminaries

3.1 Problemmodeling

The definition of the path planning problem in this paper is
similar to that in [12]. Let X ⊆ R

n represent the state space,
Xobs ⊂ X represent the space occupied by obstacles, and
X f ree ⊂ X\Xobs represent the free space without obsta-
cles. In the path planning problem definition, it is generally
assumed that the planner does not know the specific distribu-
tion of Xobs and X f ree. The planner usually needs to confirm
whether a state belongs to Xobs or X f ree through expensive
collision checks.

Let xstart ∈ X f ree be the start state and Xgoal ⊂ X f ree

be the set of goal states. Assume σ : [0, 1] �→ X f ree is
a continuous function that possesses finite total variation,
which is equivalent to a valid path. The set of all valid paths
is denoted by �. Assuming an optimization objective, the
cost function s : � �→ [0,∞) is defined to map each path to
a non-negative real number.

The task of the optimal path planning problem is to either
find the path with minimum cost, σ ∗ ∈ �, from the xstart to
any xgoal ∈ Xgoal , or report failure if there is no such path.
The cost of the optimal path is denoted s∗. σ ∗ is defines as:

σ ∗ := argmin
σ∈�

{s(σ )|σ(0) = xstart , σ (1) ∈ Xgoal ,

∀t ∈ [0, 1], σ (t) ∈ X f ree}
(1)

3.2 Preliminaries

Informed planning algorithms, such as BIT* [14] , gener-
ate an increasingly dense RGG [25] by batch sampling. The
RGG is composed of a set of states, Xsamples ⊂ X , which
are randomly generated uniformly, and these states constitute
the vertexes in the graph. The edges between the vertex are
implicit. After finding a solution, the informed planning algo-
rithm can limit the range of the optimal solution to an ellipse
(or ellipsoid) determined by the solution. The set of states
within this ellipse (or ellipsoid) is known as the informed
set. The informed planning algorithm searches for a solution
by growing a tree rooted at xstart on this edge-implicit graph.
To grow this tree, every time a new vertex is added to the tree,

this new vertex is expanded (the root node xstart is expanded
at the beginning of the algorithm). When expanding a ver-
tex, the planner considers all the implicit edges between the
neighbors of the expanded vertex and the expanded vertex
in RGG, and selects the implicit edge that is most likely to
improve the solution based on the heuristic. If the child state
of this implicit edge is already in the tree, the edge is con-
sidered as a rewiring edge. There are two main methods for
determining whether a vertex is a neighbor: k-nearest [31]
and r-disc [32]. The k-nearest policy defines a state’s neigh-
bors as the k nearest states to that state, where k is defined
as:

k(q) = ηe

(
1 + 1

d

)
log(q) (2)

The r-disc policy defines the neighbors of a state as all the
states within a radius of r around it, where r is defined as:

r(q) = 2η

(
1 + 1

d

) 1
d
(

λ(X f̂ )

ζd

) 1
d
(
log(q)

q

) 1
d

(3)

In Eqs 2 and 3, q is the number of states in the informed
set, d is the dimension of the planning space, η ≥ 1 is the
tuning parameter, λ(X f̂ ) is the Lebesgue measures of the
informed set and ζd is an d-dimensional unit ball.

After obtaining the implicit edges between the expanded
state and its neighbors, the planner needs to evaluate the
potential of these implicit edges to improve the solution, in
order to select themost promising edges to add to the tree. The
informed planner utilizes a priority queue, or min-heap, of
lexicographically ordered keywords based on heuristic costs
to prioritize pending implicit edges. The planner then takes
the best edge from the priority queue and performs a series
of checks (e.g., collision check) on it to decide whether to
add it to the tree.

4 OSIS

4.1 Basic idea

OSIS constructs an obstacle density approximation by col-
lecting statistics on the results of collision checks and
uses this information to calculate an inadmissible but more
effective heuristic. This heuristic prioritizes exploration of
the free space and avoids ineffective exploration, resulting
in improved performance. In addition, OSIS improves the
rewiring strategy to avoid inefficient path optimization prior
to finding the initial solution. This approach enables the plan-
ner to focus on the search for the initial solution. Using these

123



Peer-to-Peer Networking and Applications           (2025) 18:160 Page 5 of 18   160 

strategies, OSIS effectively addresses the challenges faced
by existing informed planners, resulting in faster and more
efficient discovery and convergence of the initial solution.

The obstacle sensitivity of OSIS is based on the fact that
if collisions are frequently detected in a certain region of the
planning space, it means that this region is likely to be occu-
pied by obstacles, and the planner should choose to avoid this
region as much as possible or reduce the priority of explo-
ration in this region. In order to measure the proportion of
detected collisions occurring in a region, OSIS partitions the
planning space intomultiple subspaces based on user-defined
parameters. Each subspace is associated with an obstacle
density, denoted by ρ, where ρ ∈ [0, 1], which represents
the fraction of the space occupied by obstacles within that
subspace. The density of obstacles in the subspace will be
calculated dynamically according to the results of the colli-
sion check during the execution of the algorithm.

Figures 1 and 2 demonstrate how OSIS finds a solution
through the obstacle-sensitive inadmissible heuristic andhow
it outperforms the admissible heuristic. Where the left blue
square represents the start, the right red square represents the
goal, the black point represents the sample, the gray rectangle
represents the obstacle, the blue edge represents the search
tree, the red edge represents the collision edge, and the green
path represents the solution. As illustrated in Fig. 2, the plan-
ner utilizing the admissible heuristic repeatedly attempts to
progress directly toward the goal but frequently collides with
the obstacle. In contrast, as shown in Fig. 1, OSIS uses infor-
mation from previous collisions, such as those encountered
during sampling, to proactively navigate around obstacles.

OSIS achieves initial-solution-first by delaying rewiring.
Before finding the initial solution, OSIS records all potential
rewiring edges encountered and does not process them until
the initial solution is found.

OSIS mainly uses two priority queues, sorted by heuris-
tic cost, to delay processing potential colliding edges (PCE)
and potential rewiring edges (PRE) that may not improve the
solution: the PCEs queue QC and PREs queue QR . Since a
PCE is likely to collide with an obstacle, it has a low prob-
ability of improving the solution. If an edge is both a PCE
and a PRE, it will first be treated as a PCE. Furthermore, the
normal edge queue Q of OSIS stores edges that are neither
PCEs nor PREs. In general, the edges in Q will be processed
preferentially compared to the edges in QC and QR .

Figure 3 shows the sequence in which OSIS processes
edges. PREs are not processed until an initial solution is
found, and OSIS starts processing PREs immediately after
finding an initial solution. In each batch,OSISwill give prior-
ity to the normal edges, while the PCEs that may not be able
to optimize the solution will be processed last. If all edges
in a batch can not significantly improve the current solution,
then processing the delayed PCE may not yield much ben-
efit either. In such situations, one can consider completely

discarding PCEs or discarding them before finding an initial
solution to speed up the planner to start the next batch for a
more refined search. After finding an initial solution, OSIS
will no longer delay PREs, but it will still delay PCEs.

The utilization of PCEs queue and PREs queue enables
OSIS to prioritize edges that have a higher probability of
improving the solution, enables OSIS to find the initial solu-
tion faster, and thereby enhancing the search efficiency and
convergence speed of the planner.

OSIS mainly has three key components: getting the best
edge, trying to add the best edge to the tree, exhausting the
current approximation, and they will be described in detail
in Sections IV-C, IV-D, and IV-E, respectively.

Algorithm 1 OSI S(xstart , Xgoal ,m).
1: V ← {xstart }; E ← ∅; T ← (V , E);
2: Xsamples ← {Xgoal };
3: Vclosed ← ∅; Vinconsistent ← ∅;
4: QR ← ∅; QC ← ∅;
5: Q ← Expand({xstart });
6: εin f l ← ∞; εtrunc ← 1;
7: is search done ← False;
8: is f inal search on batch ← False;
9: has exact solution ← False;
10: repeat
11: if is search done or Q ≡ ∅ then
12: if is f inal search on batch or
13: not has exact solution then
14: ProcessPotentialEdges(QC );
15: Prune();
16: Vclosed ← ∅;
17: Xsamples

+←− Sample(m);
18: Q ← Expand({xstart });
19: εtrunc ← UpdateTruncationFactor();
20: is f inal search on batch ← False;
21: else
22: εin f l ← UpdateIn f lationFactor();
23: Q

+←− Expand(Vinconsistent );
24: Vinconsistent ← ∅;
25: is f inal search on batch ← True;
26: is search done ← False;
27: else
28: (xp, xc) ← argmin

(xi ,x j )∈Q
{
keyOSI S(xi , x j )

}
;

29: if not has exact solution and xc ∈ V then

30: QR
+←− (xp, xc);

31: else
32: is search done ← TryAddBest Edge((xp, xc));
33: until stop

4.2 Initialization

Initially, there are no edges in the tree, but only xstart , which
represents the root node of the tree (line 1 in Alg. 1). The
sample set Xsamples is initialized with Xgoal (line 2 in Alg.
1), where Xgoal ⊂ X denotes goal states.
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(a) (b) (c)

(d) (e)

Fig. 1 Example of obstacle-sensitive inadmissible heuristic search

OSIS then takes candidate edges that can be added to the
tree by expanding xstart . Alg. 2 shows how OSIS expands
the set of states to be extended: Xe. For each state xp in
Xe, OSIS first checks whether it is possible to optimize the
solution through xp (line 3), where f̂ (x) represents an admis-
sible estimate of the cost to reach the goal from the start,
passing through state x , defined as f̂ (x) := ĝ(x) + ĥ(x);
ĝ(x) represents the heuristic cost-to-come of state x , serv-
ing as an admissible estimate or lower bound on the cost of
reaching state x from the start; ĥ(x) represents the heuristic
cost-to-go of the state x , providing an admissible estimate
or lower bound on the cost of reaching the goal from state
x . If it is possible to optimize the solution through xp, OSIS
obtains its neighbors based on the k-nearest or r-disc strat-
egy (line 4). For a neighbor xc of xp, if the solution may
be optimized by edge (xp, xc) (line 5-6), where f̂ ((x, y))
represents the heuristic cost of reaching the goal from the
start, while passing through the edge (x, y), which defined
as f̂ ((x, y)) := ĝ(x) + ĉ(x, y) + ĥ(x); ĉ(x, y) represents

the heuristic cost of the edge (x, y), providing an admissible
estimate of the cost associated with traversing from state x
to state y. Finally, OSIS determines whether it is a PCE, if
so, it is added to the PCE queue QC , otherwise it is added to
Eout , which represents the set of candidate edges. (line 7-10)

Algorithm 2 Expand(Xe).
1: Eout ← ∅;
2: for all xp in Xe do
3: if f̂ (xp) ≤ min

x∈Xgoal
{gT (x)} then

4: for all xc in neighbors(xp) do
5: if f̂ ((xp, xc)) ≤ min

x∈Xgoal
{gT (x)} then

6: if ĝ(xp) + ĉ(xp, xc) ≤ gT (xc) then
7: if I s PCE((xp, xc)) then

8: QC
+←− (xp, xc);

9: else
10: Eout

+←− (xp, xc);
11: return Eout
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(a)

(d) (e)

(b) (c)

Fig. 2 Example of admissible heuristic search

OSIS, similar to ABIT*, incorporates advanced graph
search techniques to enhance search efficiency. Formally, the
inflation factor, εin f l ≥ 1, is initialized to infinity (line 6 in
Alg. 1), and it is initialized to a very large number during the
actual execution of the algorithm.

The Boolean variable is search done indicates whether
a search round is complete, is f inal search on batch indi-
cates whether a batch is complete.

4.3 Get the best edge

In this step, OSIS obtains the edge from the edge queue that
is most likely to improve the solution. If the best edge is PRE
and the initial solution has not been found, then PRE will be
delayed; otherwise, OSIS will try to add it to the tree.

If the search under the current approximation is not fin-
ished, OSIS takes an edge (xp, xc) from the edge queue Q
that is most likely to improve the solution (line 28 in Alg. 1).
OSIS sorts edges lexicographically in terms of sorting keys,
where the edge with the smallest key value is treated as the
best edge. For an edge (xp, xc), the sort key is defined as

Eq. 4:

keyOSI S(xp, xc) =
(

ρ(xp, xc)
(
gT (xp) + ĉ(xp, xc) + εin f l ĥ(xc)

)
,

g(xp) + ĉ(xp, xc),

g(xp)

)
(4)

where gT (x) represents the cost-to-come of state x in a
given tree T , which denotes the current cost of coming from
the start to state x ; ρ(xp, xc) represents the collision factor
of edge (xp, xc), which reflects the possibility of collision
between the edge and the obstacle; the higher the value of
the collision factor, the more likely the edge is to collide with
the obstacle.

Suppose that for a problem domain space X , OSIS parti-
tions it into nmutually disjoint subspaces, i.e.

⋃n
i=1 Xi = X ,

and Xi ∩ X j = ∅, i, j ∈ [1, n], i �= j . For an edge (x, y),
assuming that its trajectory through space passes through m
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Fig. 3 The order of edges processed by OSIS

subspaces, its collision factor is calculated as follows:

ρ(x, y) =
m∏
i=1

(
1 + ldai

λ(Xai )

)αρai
(5)

where lai denotes the length of the edge (x, y) in the i-th sub-
space that it passes through, λ(Xai ) denotes the Lebesgue
measure of the i-th subspace that (x, y) passes through,
ρai ∈ [0, 1] denotes the obstacle density of the i-th subspace
that (x, y) passes through, d denotes the dimension of the
planning space, α denotes the obstacle sensitivity parameter,
which is used to adjust the sensitivity of OSIS to obstacles.
By default, α is set to 1.

The implication of Eq. 5 is that if an edge has a longer
trajectory in space or passes through a subspace with a high
obstacle density, it is highly likely to collide with obstacles.
For the subspace Xai that the edge (x, y) traverses, if the
region traversed by (x, y) in Xai is sufficiently small or the
obstacle density ρai tends to 0, the collision factor of (x, y)
in this space tends to 1. OSIS computes the collision factor of
(x, y) by multiplying the collision factors of each traversed
subspace. When (x, y) passes through an empty area, the
collision factor tends to 1, which has a minimal impact on
the heuristic cost of (x, y). In contrast, when (x, y) passes
through a "crowded" area with frequent collisions, the col-
lision factor of (x, y) becomes significantly larger than 1,
inflating its heuristic cost and reducing its processing prior-
ity.

Figure 4 builds on Figs. 1 and 2 to demonstrate how OSIS
utilizes obstacle density to compute the inadmissible heuris-
tic cost and identify the correct path. In this example, each
subspace is sized 20× 20. A point(x, y) is mapped to a sub-
space Xi j , where i = �x/20� and j = �y/20�. The path
AB passes through subspaces X14, X24 and X34, while the
path AG traverses X31, X32, X22, X32, X31, and X41. The
figure also indicates the obstacle density of these subspaces,
defined as the proportion of their area occupied by obstacles.

According to Eq. 5, ρ(A, B) = 1 and ρ(A,G) ≈ 3.05
are calculated 2. Similarly, based on Eq. 4 (for simplicity,

2 AG passes through 6 subspaces with their obstacle density ρa =
[0.25, 0.5, 1, 0.5, 0.5, 0], and the trajectory length of AG in each
subspace is

√
200, and the Lebesgue measure of each subspace is

20 × 20 = 400. So ρ(A,G) = ∏6
i=1

(
1 + 200

400

)ρai ≈ 3.05. The same

goes for ρ(A, B).

assuming εin f l = 1), we have gT (A) + ĉ(A, B) + ĥ(B) ≈
174.42 and gT (A) + ĉ(A,G) + ĥ(G) ≈ 148.44. Conse-
quently, keyOSI S(A, B)[0] = 1 × 174.42 = 174.42 and
keyOSI S(A,G)[0] = 3.05×148.44 = 452.742. As a result,
OSIS selects AB over AG, thereby avoiding a guaranteed
failed collision check.

4.4 Try to add the best edge to the tree

In this step, OSIS verifies the best edge taken from the edge
queue, and if the best edge can indeed optimize the solution
and has no collision with obstacles, OSIS adds it to the tree
and updates the solution.

After identifying the best edge (xp, xc) that has the high-
est potential to improve the solution, OSIS proceeds to add it
to the tree. However, before doing so, OSIS verifies whether
xc is already present in the tree T . If xc is indeed in the tree,
(xp, xc) is considered a PRE. In the case where an initial
solution has not yet been found, OSIS postpones the pro-
cessing of this edge. It is then placed in the queue of PREs,
and the next iteration begins (lines 29-30 in Alg. 1).

If the best edge does not qualify as a PRE or an initial solu-
tion has already been found, the TryAddBest Edge function
is invoked to try adding it to the tree. This function returns a
Boolean value that indicates whether the best edge is impos-
sible to optimize the solution. If the TryAddBest Edge
function returns True, it signifies that optimizing the solu-
tion is unfeasible even for the best edges, indicating even a
lower potential for optimizing the solution for the remaining
edges.

The function TryAddBest Edge first checks if the edge
(xp, xc) is already present in the tree. If (xp, xc) is found
in the tree and xc has not been expanded during the current
search, OSIS includes xc in Vclosed , signifying that xc has
been expanded during the current approximation, then OSIS
expands xc, and the function returns False (lines 1-7 in Alg.
3). If xc has been expanded in the current search, it is added
to the set Vinconsistent as an inconsistent state and will not be
expanded further.

Then OSIS checks whether the edge (xp, xc) is likely to
improve the solution (lines 8-9 in Alg. 3). In doing so, the
truncation factor εtrunc inflates the cost of the solution that
can be obtained by (xp, xc) under the current approximation.
This requires that the best edge (xp, xc) must significantly
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Fig. 4 How does OSIS use obstacle density to find the correct path

improve the solution for the best edge to be considered to
improve the solution, otherwise TryAddBest Edge returns
True, indicating that none of the remaining edges can
improve the solution.

When the initial solution has not been found yet, the value
of min

x∈Xgoal
{gT (x)} is infinite, then the inequality of line 8 and

line 11 in Alg. 3 will always be true, and then all the best
edges (xp, xc) are regarded as can optimize the solution. This
approach leads to two issues: (i) All PREs are regarded as
can optimize the solution, however, since no new state is
added to the tree, it is not possible to update the solution
even by adding it to the tree. (ii) Any rewiring edge will be
treated as useful, even if it is not on the optimal path. Due to
these reasons, rewiring in the absence of an initial solution
does not provide any apparent benefits to finding the initial
solution. In contrast, it may result in an unnecessary search.
Consequently, OSIS defers rewiring until an initial solution
is found.

If a heuristic cost based on the edge (xp, xc) indicates that
it may be able to improve the solution, it is collision detected
to compute its true cost and verify whether it is indeed likely
to improve the solution (lines 10-12 in Alg. 3), where c(x, y)
represents the true cost of the edge (xp, xc).

OSIS dynamically updates the obstacle density based on
the collision check results. When a collision is detected for
a state, the obstacle density of the corresponding subspace is
increased, indicating a higher proportion of obstacles. Con-
versely, if no collision is detected, the obstacle density of the
subspace is decreased, reflecting a lower obstacle presence.

The best edge (xp, xc) is added to the tree if it does not
collide with the obstacle and can improve the solution. If

Algorithm 3 TryAddBest Edge((xp, xc)).
1: if (xp, xc) ∈ E then
2: if xc ∈ Vclosed then

3: Vinconsistent
+←− xc;

4: else
5: Q

+←− Expand({xc});
6: Vclosed

+←− xc;
7: return False;
8: if εtrunc(gT (xp) + ĉ(xp, xc) + ĥ(xc)) ≤ min

x∈Xgoal
{gT (x)} then

9: if gt (v) + ĉ(xp, xc) < gT (xc) then
10: if CheckEdge((xp, xc)) then
11: if gT (xp) + c(xp, xc) + ĥ(xc) < min

x∈Xgoal
{gT (x)} then

12: if gT (xp) + c(xp, xc) < gT (xc) then
13: if xc ∈ V then

14: E
−←− {

(xprev, xc) ∈ E
};

15: else
16: Xsamples

−←− xc;
17: V

+←− xc;
18: E

+←− (xp, xc)
19: if xc ∈ Vclosed then

20: Vinconsistent
+←− xc;

21: else
22: Q

+←− Expand({xc});
23: Vclosed

+←− xc;
24: if not has exact solution and
25: xc ∈ Xgoal then
26: has exact solution ← True
27: ProcessPotentialEdges(QR);
28: return False;
29: return True;

Algorithm 4 ProcessPotentialEdges(Qp).
1: is processing done ← False
2: while Qp �= ∅ and not is processing done do
3: (xp, xc) ← argmin

(xi ,x j )∈Qp

{
keyOSI S(xi , x j )

}
;

4: is processing done ← TryAddBest Edge((xp, xc));

xc is already in the tree, the edge connecting xc to its pre-
vious parent xprev is also removed (lines 13-18 in Alg. 3).
When (xp, xc) is added to the tree, xc is expanded if it has
not been expanded already in the current search. An ini-
tial solution is found when xgoal is first added to the tree
as xc. At this point, OSIS immediately starts processing
previously delayed PREs, adding those that can improve
the solution to the tree (lines 24-27 in Alg. 3). If the best
edge fails to improve the solution after further inspection,
TryAddBest Edge returns False and proceeds to try the next
edge.

4.5 Exhaust the current approximation

If the best edge is impossible to improve the solution, or the
edge queue is already empty, OSIS will start the next round
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(a) BIT*

(d) EIT* (e) OSIS (f) OSIS (Preprocess)

(b) ABIT* (c) AIT*

Fig. 5 The growth of the tree in Problem 1 when different planners
find the initial solution. Obstacles in the space are represented in gray,
while black dots represent the sampling states. The blue square repre-
sents start and the red square represents goal. The green lines represent
solutions found by the planner. The solid blue lines indicate the edges
added to the tree, and the dotted light blue lines in (c) and (d) indicate
the edges added to the reverse tree of AIT* and EIT*. The red line repre-

sent the edge that the planner tried to add to the tree, but failed because
it overlapped with the obstacle and did not pass the collision check.
(e) and (f) are both the planning results of OSIS. The difference is that
(f) preprocesses the scene before execution to obtain the distribution of
obstacles in the space in advance, while (e) gradually collects the results
of collision check in the planning process to predict the distribution of
obstacles in the space

of search or approximation (line 11 in Alg. 1). If the current
approximation is not exhausted, OSIS updates the inflation
factor, expands the set of inconsistent states, and starts the
final search under the current approximation (lines 22-25 in
Alg. 1).

If the current approximation is exhausted or an initial
solution has not been found (lines 12-13 and Alg. 1), OSIS
proceeds to initiate the next round of approximation. Prior to
that, OSIS handles the PCEs that were postponed during the
current approximation phase (line 14 in Alg. 1; Alg. 4). Sub-
sequently, the graph is pruned to eliminate redundant states
and edges (line 15 inAlg. 1), The definition of Prune is similar
to that of research [14]; A new batch of samples is generated
and xstart is expanded again (lines 17-18 in Alg. 1).

During the sampling process, it is necessary to check
whether the generated samples collide with obstacles. OSIS
estimates the probability that a sample is valid based on the
obstacle density. If the subspace where the sample belongs
to has a high density of obstacles, OSIS can directly dis-
card the sample without collision check. Alternatively, OSIS
can utilize a priority queue to order the samples to be
detected, delaying the check of potential colliding states.
Similarly to the edge validation, OSIS also updates the
obstacle density based on the result of the sample collision
check.

Finally, the truncation factor is updated to ensure a more
precise and efficient search in the subsequent round (line 19 in

123



Peer-to-Peer Networking and Applications           (2025) 18:160 Page 11 of 18   160 

(a) BIT*

(c) AIT*

(e) OSIS (f) OSIS(Preprocessed)

(b) ABIT*

(d) EIT*

Fig. 6 The growth of the tree in Problem 2 when different planners find the initial solution. The meanings represented by the edges and points of
various colors are the same as in Fig. 5
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(a) BIT*

(c) AIT*

(e) OSIS (f) OSIS (Preprocessed)

(d) EIT*

(b) ABIT*

Fig. 7 The growth of the tree in Problem 3 when different planners find the initial solution. The spiral channel is the only free space in this problem
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Table 1 Experimental parameters

Problem Samples per batch Solve time (ms) OSIS subspace size Space size

1 100 1000 5 50

2 100 2000 10 200

3 200 10000 40 400

Alg. 1). The strategy for updating the inflation and truncation
factors is similar to that of the study [15].

4.6 Analysis

This sectionwill analyzewhy the obstacle-sensitive inadmis-
sible heuristic used by OSIS is guaranteed to find the optimal
solution. Firstly, in [14] et al., the authors have analyzed and
proved that admissible heuristics can guarantee that the plan-
ner will converge the solution to the optimal.

According to Eqs. 2 and 3, as the number of samples
increases, the growth steps of the search tree progressively
decrease. Combined with Eq. 5, the edge collision factor
gradually approaches 1, and εin f l in Eq. 4 converges simi-
larly toward 1 as the number of iterations increases. At this
point, the heuristic for OSIS will gradually converge from
inadmissible to admissible. So, if there is an optimal solu-
tion to the planning problem, OSIS must be able to find it as
the number of iterations increases.

5 Experimental results

To evaluate the performance of OSIS, we compare it with
the Open Motion Planning Library (OMPL) [33] versions of
BIT*, ABIT*, AIT*, and EIT*. The performance are mea-
sured with OMPL v1.6(3) on a laptop with 16GB of RAM
and an Intel i7-8550U processor.

To intuitively demonstrate the advantages of OSIS over
existing algorithms, this experiment includes three designed
planning problems, as shown in Figs. 5, 6 and 7. Problem 1
is a simple scenario where the start is semi-surrounded by
walls and the planner needs to bypass them to find the goal
behind the walls.

Problem 2 presents a more intricate scenario character-
ized by numerous obstacles and the presence of local optimal
paths. In this case, the planner must effectively circumvent
the obstacles and quickly escape from local optima.

Problem 3 is a 3D scenario in which the spiral channel
is the only free space in the whole planning space, and the

3 Due to the removal of the EIT* algorithm in OMPL v1.6, this exper-
iment compares against the EIT* algorithm as implemented in OMPL
v1.5.

traditional heuristic functionwill face great challenges in this
space.

Table 1 shows the settings of the planner parameters for
different planning problems 4. OSIS partitions the planning
space into subspaces using a coarse-grained grid. For exam-
ple, in a two-dimensional space, if the planning space X has
a size of n and each subspace has a size of m, the coordinate
range of the planning space in each dimension is [0, n]. Each
point (x, y) is uniquely mapped to a subspace Xi j , where
i = �x/m� and j = �y/m�.

In addition, for all planners, the RGG tuning parameter η

is set to 1.1, the k-nearest strategy is used to obtain neigh-
bors, the Euclidean distance is used as the default heuristic,
and the objective of optimization is to minimize the length
of the path. For ABIT* and OSIS, the initial values of the
inflation factor εin f l and the truncation factor εtrunc are 106

and 1, respectively. In OSIS, the obstacle sensitivity α is set
to 1. When considering any edge (x, y), if its collision factor
ρ(x, y) exceeds the threshold of 1.3, it is identified as a PCE.

In the experiment, each planner was run 100 times per
planning problem using the settings described above. Fur-
thermore, for testing purposes, OSIS is evaluated in three
modes, namely:

1. Thedefaultmode: initially, no obstacle density informa-
tion is available, but OSIS maintains the obstacle density
record after each execution;

2. The density reset mode: the obstacle density is reset
after each planning, and the next planning is equivalent
to planning in a completely new environment;

3. The pre-processed mode: prior to planning, the plan-
ning space is pre-scanned to acquire a more accurate
obstacle density.

Figure 7 shows the median path cost and the success rate
achieved by all test subjects in each planning problem. In
Figs. 8 (a), 8 (c) and 8 (e) the lines show the median cost
over time of the solution of the almost-surely asymptotically
optimal planners. In Figs. 8 (b), 8 (d) and 8 (f), the lines
represent the success rate of the planner in finding the initial
solution over time.

4 In theOMPL implementation, someplanners had amaximum limit on
the number of sampling attempts. We adjusted these settings to ensure
that each planner could collect an equal number of samples per batch.
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(a) Median path cost of Problem 1

(c) Median path cost of Problem 2

(e) Median path cost of Problem 3

(b) Success rate of Problem 1

(b) Success rate of Problem 2

(f) Success rate of Problem 3

Fig. 8 Performance of each planner
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Table 2 Average performance of each planner when finding the initial solution in Problem 1

Planner Time (ms) Edge collision checks Edge valid rate State collision checks State valid rate

BIT* 237.68 99 39.40% 118 84.75%

ABIT* 117.74 66 19.70% 118 84.75%

AIT* 276.68 63 23.81% 116 86.21%

EIT* 471.91 21 42.86% 117 85.47%

OSIS 81.95 15 86.67% 107 93.46%

OSIS (Reset) 88.14 24 70.83% 116 87.07%

OSIS (Preprocess) 81.35 15 86.67% 104 96.15%

Note that in Problem 2, AIT* can hardly find the initial
solution within 2 seconds, so there are no data for AIT* in
Fig. 7. Meanwhile, Fig. 8 (f) shows that AIT* finds fewer
than 50% of the initial solutions within 10 seconds, resulting
in no data for AIT* in Fig. 8 (e). This is due to the fact that the
scene in Problem 2 and Problem 3 is too complex and there
are a large number of obstacles in the space, which causes
AIT* need to update the reverse tree frequently and leads to
the degradation of the search performance.

As observed in Fig. 8, regardless of the mode used,
OSIS outperforms existing informed planning algorithms
by achieving faster initial solution finding and convergence
to the optimal solution. The advantage becomes more pro-
nounced as the environment becomes more complex and
collision check costs increase.

In the simple scenario of Problem 1, there is minimal vari-
ation in the performance of different OSIS modes when it
comes to finding the initial solution. Among the other plan-
ners, only ABIT* performs better.

In the complex scenario of Problem 2 and Problem 3, it
is evident that the preprocessed mode and the default mode
of OSIS exhibit slightly superior performance compared to
the reset density mode in terms of finding the initial solution.
This advantage comes from their initial understanding of the
distribution of obstacles within the planning space, allowing
them to effectively navigate around obstacles from the outset.

Conversely, the reset density mode of OSIS clears the his-
torical collision information before each planning, requiring
a period of planning to gather sufficient information and iden-

tify potential obstacles.However, even the reset densitymode
of OSIS significantly outperforms other informed planning
algorithms.

Furthermore, it is worth noting that the convergence speed
of the OSIS may gradually decreases with time. This is
because the search strategy of OSIS drives the planner to
stay away from obstacles as much as possible, resulting in
some clearance between the path and the obstacles. Con-
sidering that in practical applications, the planner is usually
required to keep a certain safe distance from the obstacles,
so the attenuation of convergence speed is acceptable.

For other informed planning algorithms, ABIT* performs
slightly better than BIT*, while EIT* and AIT* suffer per-
formance degradation due to frequent updates of the reverse
tree.

Figures 5, 6 and 7 depict the evolution of the search tree
during the process of finding the initial solution for Problem
1, Problem 2 and Problem 3, respectively. It should be noted
that due to the complexity of Problem 2, AIT* struggles to
find the initial solution within the allotted execution time.
As a result, Fig. 6 (c) shows the growth of AIT* until the
execution time limit is reached, and the green path represents
the closest path to the goal found by AIT* after reaching the
upper bound of the time, and it can be seen that this is a
locally optimal path, which does not actually lead to goal.

Figures 5 (e), 6 (e) and 7 along with Figs. 5 (f), 6 (f) and
7 (f) present the growth of the search tree for OSIS in differ-
ent settings: without any obstacle density information, and

Table 3 Average performance of each planner when finding the initial solution in Problem 2

Planner Time (ms) Edge collision checks Edge valid rate State collision checks State valid rate

BIT* 840.40 1194 20.77% 416 59.38%

ABIT* 810.05 1135 23.70% 404 59.65%

AIT* − − − − −
EIT* 855.14 75 40.00% 373 59.79%

OSIS 299.81 229 92.14% 451 79.16%

OSIS (Reset) 496.582 640 46.52% 713 62.41%

OSIS (Preprocess) 297.48 226 95.58% 408 87.5%
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Table 4 Average performance of each planner when finding the initial solution in Problem 3

Planner Time (ms) Edge collision checks Edge valid rate State collision Checks State valid rate

BIT* 3296.02 808 17.45% 2872 6.96%

ABIT* 3468.96 738 20.05% 3089 6.93%

AIT* 7959.62 2378 21.31% 2378 6.90%

EIT* 5561.04 61 57.38% 2914 6.90%

OSIS 1123.37 159 88.05% 568 70.77%

OSIS (Reset) 2382.98 199 87.44% 3600 12.69%

OSIS (Preprocess) 1014.11 164 88.41% 358 100.00%

with sufficient obstacle density information obtained through
preprocessing or multiple planning tasks, respectively.

Based on Figs. 5, 6 and 7, it is evident that OSIS out-
performs other informed planning algorithms in terms of
collision check, with significantly fewer instances of col-
lision check and a higher success rate. Furthermore, thanks
to its optimized rewiring strategy, OSIS exhibits improved
efficiency in initial solution search and quicker escape from
local optima.

Tables 2, 3, and 4 present the average time taken by each
planner to find the initial solution in Problems 1, 2, and 3,
respectively, as well as the average collision checking over-
head during this process. The table shows that all versions of
OSIS find the initial solution more quickly. This is because
the edges and states evaluated by OSIS generally have a
higher probability of passing collision checks, resulting in
fewer necessary collision checks and thus improved perfor-
mance.

Table 3 indicates that OSIS(Reset) checks more states on
average because the limited free space in Problem 3 requires
OSIS(Reset) to spend additional time discovering it in each
run. Planners other than OSIS do not optimize sampling and
sample uniformly across the entire planning space, resulting
in similar state validity rates. In contrast, OSIS optimizes the
sampling based on obstacle density, leading to a higher state
validity rate.

It should be noted that EIT* enhances the quality of
the reverse tree by performing sparse collision checks on
reverse edges, which are not included in Tables 2, 3, and 4.
Figure 9 illustrates EIT* conducting sparse collision checks
on edgeswhen the initial solution is found, it shows that EIT*
performs a large number of sparse collision checks, which
actuallymakes the search overhead shift from forward search
to reverse search, but the overall search overhead does not
decrease significantly.

6 Conclusion

OSIS employs two key strategies that contribute to its ability
to find and converge the initial solution efficiently. Firstly,

it calculates the obstacle density distribution in the planning
space by tracking collision check results. Based on this infor-
mation, it determines the collision factor, which indicates
the likelihood of collision between edges and obstacles. This
obstacle-sensitive approach enables the planner to efficiently
navigate around obstacles.

Secondly, OSIS adopts an initial solution-first path opti-
mization strategy. It delays the rewiring operation, which

(a) Problem 1 (b) Problem 2

(c) Problem 3

Fig. 9 Edges for sparse collision checking in EIT*. The red edges
indicate the edges where the sparse collision check fails, and the blue
edges indicate the edges where the sparse collision check succeeds
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optimizes the existing path, until the initial solution is found.
This approach prevents unnecessary path optimization before
finding the initial solution, resulting in faster space explo-
ration.

In addition, it makes OSIS jump faster from the local
optimum, to speed up the convergence of the solution. By
combining these two strategies, OSIS demonstrates its ability
to quickly discover the initial solution and converge effi-
ciently to the optimal solution.

Although OSIS exhibits notable advantages in improving
pathfinding efficiency, it also has limitations. Its strong sen-
sitivity to obstacles leads it to actively avoid them, which can
hinder its ability to identify paths through narrow passages.
Future work will focus on integrating OSIS with algorithms
such as RRV [34], allowing OSIS to efficiently avoid obsta-
cles while also effectively discovering narrow passages in the
planning space.
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