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Abstract
IoT devices are vulnerable to various attacks because they are resource-limited. This paper introduces a novel type of attack 
called time-delay attack. The malicious nodes delay packet forwarding by extending the processing time of packets, thus 
affecting the performance and availability of the network. This attack is very stealthy and difficult to detect because it does 
not violate any communication protocol. To the best of our knowledge, how to detect the time-delay attack in IoT networks 
is still an open problem. We first propose a machine learning-based baseline algorithm to detect the time-delay attack. It 
models the system features of each node and the forwarding time of packets to detect whether a node is malicious or not. 
However, the baseline algorithm needs to detect all nodes in the network, which causes unnecessary resource consumption. 
Moreover, using a single model in the baseline algorithm does not have high robustness. To reduce the overhead and improve 
the detection performance, we design an efficient Detection algorithm based on Node pruning and Model fusion (DNM). 
DNM uses node pruning to filter out suspected nodes from all nodes. The suspected nodes are then detected according to a 
fusion model. We conduct experimental evaluations based on the Cooja network simulator. The experimental results show 
that baseline and DNM possess close to 90% accuracy, and DNM significantly outperforms other algorithms with an aver-
age F1-score of 0.85.
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1 Introduction

With the development of sensors, wireless networks, and 
embedded computing, the Internet of Things (IoT) indus-
try is rapidly developing and expanding. As a widespread 

infrastructure, IoT has been widely used in several fields, 
such as smart homes [1], smart grids [2], environmental 
monitoring [3], national defense, and so on.

In IoT networks, the communication range of a single 
sensor device (or a node) is limited. When a node transmits 
packets to another node outside the communication range, 
it is necessary to rely on other nodes within the communi-
cation range for forwarding. Nodes can communicate with 
each other by utilizing various IoT technologies and proto-
cols (e.g., 5G [4], WiFi [5], ZigBee [6]), forming a multi-
hop IoT network. The multi-hop nature of IoT networks pro-
vides excellent flexibility in routing, and nodes acting as 
packet relays can find the optimal next hop through routing 
protocols, such as IPv6 Routing Protocol for Low-Power and 
Lossy Networks (RPL) [7]. However, the nodes are usually 
resource-constrained. They are at risk of being attacked by 
attackers and hijacked as malicious nodes. Malicious nodes 
can perform deliberate actions such as dropping, tamper-
ing, and replaying packets during packet transmission, thus 
destroying the stability and availability of the networks [8, 
9]. Therefore, how to ensure the security of packets during 
the routing process has become a key concern.
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Motivation In this paper, we focus on internal attacks in IoT 
networks. The existing literature on routing security mainly 
focuses on detecting and defending against traditional cyber 
attacks, e.g., black hole attacks, gray hole attacks, worm-
hole attacks, and Sybil attacks [8–10]. However, time-delay 
attacks in IoT networks are less noticed. In fact, time-delay 
attacks can cause significant harm in many scenarios, such 
as industrial process monitoring and control, prognostics 
health management, fire or intrusion detection systems, and 
traffic accident prediction [11–13]. These scenarios heavily 
rely on the timely transmission of packets and are vulnerable 
to time-delay attacks.

Taking Fig. 1 as an example, it illustrates the differences 
in the forwarding behavior of benign and malicious nodes. 
Node N1 delivers packet Pn to node NSink , which passes 
through N2,N3,N4,… ,Nt . We assume that there is a mali-
cious node N3 in the path that performs the time-delay attack. 
After receiving the packet Pn forwarded by N2 , N3 mali-
ciously introduces a delay before forwarding Pn to the next 
node N4 . This malicious behavior eventually causes NSink 
to receive the outdated packet Pn , which brings significant 
damage to the real-time scenarios in IoT networks. During 
the transmission of packets, it is difficult to determine the 
presence of malicious nodes because of the multiple nodes 
involved in forwarding and the possibility of inherent com-
munication delays. What is worse, if a relay node close to the 
Sink is malicious, it can affect the normal arrival of massive 
packets from multiple upstream nodes.

Meanwhile, Time-delay attacks are challenging to detect. 
Most other attacks in the IoT environment violate the com-
munication protocol to some extent or tamper with the origi-
nal content of the packets [8]. However, a malicious node 
performing time-delay attacks only delays the forwarding of 
packets. It does not require any decryption or tampering of 
the packet content, nor does it violate the established proto-
cols of the network. Thus, it cannot be detected using tradi-
tional cryptographic schemes [14]. Moreover, the attacker 

does not need much prior knowledge of the system. The 
attack can be easily implemented at the network layer with 
low costs.

To address the above issues, the naive idea is to col-
lect the processing time of packets for each node and the 
system features that affect the processing time of packets, 
such as buffer queue length at the time of sending, collision 
count, NOACK(no ACK is received) count, Received Signal 
Strength Indicator (RSSI), and Link Quality Indicator (LQI). 
Then, time-delay attacks can be detected by modeling the 
relationship between system features and processing time. 
However, it is difficult to formalize the relationship using a 
general mathematical formula since various system features 
can affect the packet’s processing time. Machine learning 
methods can help to solve this problem by autonomously 
modeling the relationship between multiple variables [15]. 
Therefore, we first propose a baseline algorithm that uses 
a machine learning model to predict the processing time of 
packets. By detecting each node using the baseline algo-
rithm, it is possible to determine whether the time-delay 
attack exists in the IoT network.

However, there are still two shortcomings with the base-
line algorithm. 

1. Since the above detection process collects data from all 
nodes, which can result in a large amount of energy con-
sumption. In fact, not all data are useful for detection, 
and it is not efficient to collect the data from all nodes 
without selectivity.

2. Time-delay attacks are flexible and changeable with dif-
ferent attack patterns. The machine learning models with 
the best detection performance under different attack 
patterns are often different, it is not robust enough to 
use a single model.

Contributions To alleviate the two shortcomings men-
tioned above, we propose a Detection algorithm based on 
Node pruning and Model fusion (DNM). Firstly, DNM 

Fig. 1  Differences in behavior 
between benign and malicious 
nodes when forwarding packets
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significantly reduces energy consumption by the node prun-
ing mechanism. The Sink first groups the received packets 
according to their routing paths, and an outlier detection 
algorithm is used to obtain the reputation value of each 
path group. Then, combined with the diversity of paths, the 
global reputation value of each node can be further calcu-
lated, based on which the suspected nodes can be filtered 
out. The Sink only needs to collect the data recorded by the 
suspected nodes, thereby reducing the number of transmitted 
packets and achieving energy savings. Secondly, the model 
fusion mechanism in DNM can achieve the best detection 
performance. The Sink fuses several models that perform 
better in the historical data into a new fusion model. The 
fusion model is then used for malicious node detection. The 
model fusion mechanism can dynamically select better mod-
els for detection in the case of increasing data volume of 
historical data, thus showing the best detection performance. 
It is worth noting that the training and detection of the model 
are performed on the Sink (the resource-rich node) and do 
not impose additional overhead on other nodes.

In summary, the contributions of this paper are as follows:

• A stealthy attack called the time-delay attack is intro-
duced. Meanwhile, a baseline detection algorithm based 
on machine learning is proposed.

• We design a Detection algorithm based on Node pruning 
and Model fusion (DNM) based on the baseline algo-
rithm. DNM significantly reduces energy consumption 
through the node pruning and improves the detection 
performance by the model fusion.

• The experimental results show that DNM has a lower 
overhead and higher detection performance than the 
baseline algorithm.

Organization The rest of the paper is organized as follows. 
Section 2 presents malicious node detection in IoT networks 
and time-delay attacks detection in other fields. Section 3 
models the system, and Section 4 presents the baseline algo-
rithm. Section 5 describes the DNM detection algorithm 
proposed in this paper, and Section 6 gives the experimental 
results. Finally, the conclusion is conducted in Section 7.

2  Related work

Nowadays, it is still a challenge to detect internal attacks in 
IoT networks [16], so we first present related studies on inter-
nal attacks. To the best of our knowledge, there is no research 
on time-delay attacks in IoT networks. We then discuss 
related research in other networks. In addition, the behavior 
of node is usually evaluated to detect malicious nodes in IoT 
networks, we finally introduce the trust-based detection.

2.1  Internal attacks in IoT

The IoT network routing faces many security challenges, 
such as selective forwarding attacks, flooding attacks, 
wormhole attacks, black hole attacks, and Sybil attacks.

Huang et al. [17] developed an artificial immune sys-
tem based on a danger model to detect selective forward-
ing attacks. Their scheme first obtains danger signals 
from multiple dimensions and then uses support vector 
machines to filter out suspected selective forwarding 
attacks from denial-of-service attacks. In [18], Ding et al. 
used a reinforcement learning algorithm to model selec-
tive forwarding attacks by malicious nodes. To improve 
the robustness of the detection method, they designed a 
double-threshold density peak clustering algorithm. Since 
malicious nodes cause persistent anomalies, suspicious 
nodes that are anomalous can be identified from normal 
nodes. Chen et  al. [19] identified flooding attacks by 
modeling the interaction between the two as a two-person 
Bayesian game to model the behavior of attackers and 
defenders accurately. Then, the attacker’s rational behav-
ior and the defender’s optimal strategy are revealed by 
deriving Bayesian Nash equilibrium points. Inspired by the 
obtained Bayesian Nash equilibrium, they proposed a cost-
effective defense decision framework. In order to detect 
HELLO flooding attacks, a new robust model for using 
optimized deep learning methods was proposed in [20]. 
Cluster head selection, k-path generation, HELLO flood-
ing attack detection and prevention, and optimal shortest 
path selection are the steps used in this model.

Teng et al. [21] proposed a wormhole detection algo-
rithm combined with a node trust optimization model 
to detect wormhole attacks. The method first adds the 
nodes whose neighbors exceed the threshold to the list 
of suspicious nodes, and then the exclusive neighbors 
of suspicious nodes communicate with each other. The 
paths with hop counts exceeding the wormhole thresh-
old are marked as paths to be tested. In [22], a detection 
mechanism based on lightweight Bloom filters and physi-
cally unclonable functions was proposed to detect Sybil 
attacks. This approach aims to minimize memory cost 
and detection latency without affecting detection accu-
racy. Alghamdi et al. [23] proposed a wormhole detec-
tion method based on joint deep-learning techniques and 
dynamic trust factors. Their detection method is based on 
two trust attributes. Convolutional neural networks and 
long and short term memory deep learning models have 
been trained using a federated approach to ensure data 
security and privacy at the node level. Kim et al. [24] 
proposed a trust path routing scheme based on physical 
identification to detect Sybil attacks. This scheme uses 
the received signal strength indicator and a centralized 
trust scheme to improve Sybil node detection.
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2.2  Time‑delay attack

The current research on time-delay attacks mainly focuses on 
the field of time synchronization, Cyber-Physical Systems 
(CPS), and Networked Control Systems (NCS). In [14], for 
time-delay attacks on the time synchronization of wireless 
sensor networks, Song et al. used the generalized extreme 
learning deviation (GESD) algorithm and detection by time 
conversion techniques. Moradi et al. [25] proposed a cor-
responding solution to the delay attack on synchronization 
messages in the Precision Time Protocol (PTP), a time syn-
chronization protocol. Since PTP is vulnerable to network 
attacks against its components and synchronization services, 
Moussa et al. [26] proposed a protocol to detect delay attacks 
against PTP. The nodes calculate the offset using the infor-
mation in the received Report messages. They argue that the 
calculated offset should match a pre-specified threshold, and 
results above the threshold indicate that the node may suffer 
from delay attacks. In the field of time synchronization, time 
synchronization between nodes mainly relies on the trans-
mission of specific message packets between a host and its 
neighboring slaves by some protocol. It does not involve the 
multi-hop transmission of packets in the IoT environment.

Both studies [27, 28] demonstrated that time-delay 
attacks can seriously impact cyber-physical systems like 
power grids. And both studies [29, 30] proposed corre-
sponding detection methods for time-delay attacks under 
cyber-physical and networked control systems. Ganesh 
et al. [31] proposed a deep learning-based approach to detect 
time-delay attacks. They designed a hierarchical Long and 
Short-Term Memory (LSTM) model to process the raw data 
stream from the associated CPS sensors and continuously 
monitored the embedded signals in the data to detect the 
attacks. In Cyber-Physical Systems and Networked Control 
Systems, mostly message packets are transmitted from the 
controller to the actuator or from the sensors to the control-
ler, without involving multi-hop transmission of packets as 
in IoT. Moreover, most studies assumed that the delay time 
is fixed or linearly varying [25, 28, 32, 33]. These papers 
do not consider that a powerful attacker can disguise the 
attack as a normal communication delay by setting a random 
delay time. In summary, due to the multi-hop nature of IoT 
networks, the above research methods for time-delay attacks 
in other fields cannot be applied to IoT.

2.3  Detection based on trust value mechanism

The node pruning in DNM is based on the trust value 
mechanism, and many literatures have demonstrated its 
effectiveness in IoT malicious node detection. To identify 
malicious nodes that cause attacks in smart city applications 
and networks, Altaf et al. [34] proposed a trust evaluation 

system model for detecting On-Off attacks. The total trust 
value of nodes is obtained by collecting direct observations 
of communicating nodes and suggestions from neighboring 
nodes. In addition, the contextual similarity metric is calcu-
lated to filter out those nodes that constitute Sybil attacks. A 
multi-level trust intelligence scheme based on cryptographic 
authentication was proposed in [35]. In this scheme, each 
node in the network uses RREQ packets to obtain the trust 
value of each node by evaluating the behavior of neighbor-
ing nodes. The control packets are then used to discover and 
eliminate malicious gray hole nodes. In [10], the authors 
used random forest and subjective logic theory to construct 
a trust model in IoT networks. The model is used to address 
Sinkhole attacks based on low-power and lossy networks. 
They proposed RPL routing protocol, RFTrust, is invoked 
to circumvent malicious nodes only when the trust level of 
neighboring nodes becomes low, thus reducing the extra 
overhead and energy consumption.

In [36], Liu et al. used perceptron algorithm and K-means 
method to calculate the trust value of nodes in the net-
work for identifying three typical attacks in IoT: tamper-
ing attacks, drop attacks, and replay attacks. The method 
first classifies nodes into benign, unknown, and malicious 
groups based on trust values. For the unknown group, fur-
ther detection is performed by optimizing the path. This 
idea is similar to the DNM detection algorithm proposed 
in this paper. After first selecting the suspected nodes by 
node pruning mechanism at a small cost, further detection 
of the suspected nodes is carried out. To identify conditional 
packets manipulation attack in IoT networks [37], the mali-
cious node detection framework CPMAED was proposed. 
This framework uses regression and clustering algorithms 
to evaluate the trust value of each relay node and classify 
them as benign and malicious. For multiple-mix-attack in 
IoT networks, Ma et al. [38] proposed a method called dis-
tributed consensus-based trust model (DCONST) to iden-
tify multiple-mix-attack. The method allows assessing the 
trustworthiness of IoT nodes by sharing specific information 
called cognition. The node trustworthiness values are clus-
tered by the K-Means clustering method to detect malicious 
nodes and analyze their specific attack behavior. In large-
scale clustered wireless sensor networks, Singh et al. [39] 
proposed a lightweight trust mechanism to protect such sys-
tems from various malicious attacks. A dynamic trust update 
algorithm based on parameter trust priority is also proposed 
to reward or penalize the trust value of nodes.

3  System model

In this section, we formalize the network model, and model 
the time-delay attack. In addition, Table 1 shows a list of 
notations for reference.
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3.1  Network Model

A typical IoT network consists of many nodes (e.g., sensors). 
The nodes exchange information with each other through wire-
less communication. Due to the limited communication range 
of a single node, packet transmission between different nodes 
usually relies on neighboring nodes for forwarding.

We denote Nset as the set of nodes. Nset consists of Sink 
nodes that collect sensor data and sensor nodes with different 
functions, which can be represented as:

The set of Sink nodes NSink consists of m resource-rich 
devices, which can be represented as:

Without loss of generality, in this paper, we only study the 
case where there is one Sink node in the network, which is 
similar to other works [10, 35–39]. It is worth noting that our 

(1)Nset = {NSink,Nsensor}

(2)NSink = {NSink1
,NSink2

,… ,NSinkm
}

research approach can be extended to IoT networks with mul-
tiple Sink nodes.

The set of sensor nodes Nsensor consists of n resource-
constrained devices, which can be represented as:

where Ni represents a node in Nsensor . Each node in the set 
Nsensor initially has equal energy and other resources, but the 
detection tasks may be different. Sensor nodes periodically 
send packets to the Sink node for data collection.

The packets with Ni as the source node and NSink as the 
destination node can be represented as:

where Pktj represents a packet in PktNi
 sent from Ni.

The packet Pktj has multiple paths from the source node 
Ni to the destination node NSink , which can be expressed as:

where Pathq
Ni

 is denoted as the q-th path from Ni to NSink , 
which can be expressed as:

where Nj and Nk represent the nodes in Nsensor . Taking Fig. 2 as  
an example, from the node N2 to the node NSink , there are two 
paths: Path1

N2

=< N2,N6,NSink > and Path2
N2

=< N2,N3,N5,

N
Sink

>
 . Path1

N2

 means the packets from N2 follow the path: N2  
→ N6 → NSink , and Path2

N2

 means N2 transmits the packets along  
the path: N2 → N3 → N5 → NSink.

Meanwhile, Pathq
Ni
[k] denotes the k-th node in Pathq

Ni
 . 

For example, Path1
N2

[1] = N2.

3.2  Attack model

In our attack model, the attacker is assumed to have the 
following characteristics:

• The attacker is powerful enough to capture and manipu-
late one or more legitimate nodes remotely [10, 35–39]. 

(3)Nsensor = {N1,N2,… ,Ni,… ,Nn}

(4)PktNi
= {Pkt1,Pkt2,… ,Pktj,… ,Pktn}

(5)PathNi
= {Path1

Ni
,Path2

Ni
,… ,Path

q

Ni
,… ,Pathm

Ni
}

(6)Path
q

Ni
=< Ni,… ,Nj,… ,Nk,… ,NSink >

Table 1  Notations

Symbol Meaning

Nset The set of nodes
NSink Sink nodes in Nset

Nsensor Sensor nodes in Nset

Ni A node of Nsensor

PktNi
Packets sent from Ni

Pktj A packet in PktNi

PathNi
The set of paths through which Ni sends packets

Path
q

Ni

The q-th path in PathNi

Path
q

Ni
[k] The k-th node in Pathq

Ni

Nma The set of hijacked malicious nodes in Nsensor

Nm
ma

The m-th malicious node in Nma

�m
k

The probability that Nm
ma

 performs time-delay attack
�m
k

Delay time for Nm
ma

 to perform time-delay attack
�k The normal communication delay
� Maximal delay time for malicious delay
Tave
delay

The average delay time
Rtab
send

Sending packet information record table
Pid The unique identification number of a packet
Tsend Time of successful transmission of a packet
Nnext The target next hop of a packet in a network route
Nprevious The previous hop of a packet in a network route
Rtab
forward

Forwarding packet information record table
Treceive Time of successfully receive a packet
Vn A characteristic value
Rtab
receive

Receiving packet information record table
Sid The unique identification number of the source node

T
nodei
Sink

The total duration of a packet
Fig. 2  A typical IoT network structure
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An attacker can use captured nodes to launch time-
delay attacks.

• Malicious nodes only delay packet forwarding within 
a certain time range. If the delay time is too long, the 
time-delay attack is equivalent to the drop attack, which 
can be easily detected by the existing drop attack [40].

• The attacker’s goal is to affect the entire system through 
a few malicious nodes in a highly stealthy manner. The 
attacker does not interfere with normal network opera-
tions, such as changing data records, altering packets, 
compromising network devices, and tampering with 
key management operations. Intrusion Detection Sys-
tem (IDS) can detect such activities, which exposes the 
attacker to the risk of being detected [41].

Next, we provide a formal description of the attack model. 
In an IoT network, there is a path Pathq

Ni
 from node Ni to 

node NSink , and the number of relay nodes in Pathq
Ni

 is y. We 
assume that there are x (1⩽ x ⩽ y) malicious nodes in Pathq

Ni
 , 

denoted as:

where Nm
ma

 is the m-th malicious node in Nma.
Malicious nodes in Nma perform time-delay attacks on 

packets PktNi
= {Pkt1,Pkt2,… ,Pktk,… ,Pktn} from source 

node Ni to destination node NSink . Nma performs the time-
delay attack on the k-th packet Pktk (1⩽ k ⩽ n) with prob-
ability {�m

1
, �m

2
,… , �m

k
,… , �m

n
} (0 < �m

k
 < 1), and �m

k
 con-

forms to a random distribution. The delay time of Nma for 
Pktk is {�m

1
, �m

2
,… , �m

k
,… , �m

n
} (0 < �m

k
 < � ), where � is the 

maximum delay time, and �m
k

 conforms to a random distri-
bution within its allowed range. If the normal communi-
cation delay from Ni to NSink is {�1, �2,… , �k,… , �n} , the 
average delay time in the presence of time-delay attacks 
is denoted as:

Note that even in the absence of an attacker, packets may 
be delayed to reach the destination node due to normal com-
munication delays. The attacker delays the packets with a 
certain probability � and random delay duration � to disguise 
the attack as normal communication delays, which is more 
stealthy and hard to be detected.

4  Baseline detection algorithm 
for time‑delay attacks

In this section, we first introduce the basic framework of 
the baseline algorithm. Then the primary process of the 
baseline algorithm is described, including: (1) the collec-
tion and processing of packet delivery and node context 

(7)Nma = {N1

ma
,N2

ma
,… ,Nm

ma
,… ,Nx

ma
}

(8)Tave
delay

=
1

n

∑n

i=1
(
∑x

m=1
(�m

i
× �m

i
) + �i)

information. (2) forwarding delay model training and mali-
cious node detection.

4.1  The framework of baseline algorithm

In an IoT network, sensor nodes periodically report the latest 
sensor data to the Sink. Due to the limited communication 
range of sensor nodes, the packets require multiple relay 
nodes for forwarding. In order to detect time-delay attacks, 
the relay nodes’ forwarding behavior needs to be monitored. 
As shown in Fig. 3, the baseline algorithm consists of two 
main stages:

4.1.1  The collection and processing of packet delivery 
and node context information (see Section 4.2 
for details)

To monitor the forwarding behavior of nodes, each node 
records packet delivery and node context information when 
processing packets. Specifically, packet delivery information 
is the time when nodes send, forward, or receive packets. 
Node context information is the context when nodes forward 
packets, such as RSSI, LQI, and the number of packets in 
the buffer queue. Each node records the above information 
locally and sends them to the Sink periodically. After the 
information arrives at the Sink, the Sink fuses the packet 
delivery information into the forwarding delay. And then, 
node context information and forwarding delay are com-
bined as the training set for model training.

As shown in Fig. 3, it assumes that node N1 sends the 
packet Pkti to the Sink NSink through node N3 , where the time 
when N1 sends Pkti ( t1 ), the time when N3 receives and sends 
Pkti ( t2 and t3 ), and the time when NSink receives Pkti ( t4 ) 
are the packet delivery information. After the Sink receives 
these information, it can calculate the forwarding delay of N3 
forwarding Pkti , which equals t4 − t1 . Additionally, the infor-
mation such as RSSI, LQI, and the number of packets in the 
buffer when N3 forwards Pkti is the node context information.

4.1.2  Forwarding delay model training and malicious node 
detection (see Section 4.3 for details)

We assume that the IoT network does not suffer from mali-
cious attacks in some stages [42], e.g., the initialization stage 
of devices. Therefore, we collect and process the informa-
tion from these stages into training sets for training the for-
warding delay models. Then, the Sink collects and processes 
such information from other stages into detection sets for 
malicious node detection using the trained models. We build 
different models for different relay paths of each relay node. 
As shown in Fig. 3, there are two relay paths for relay node 
N3 : N1 → N3 → NSink and N2 → N3 → NSink . Each relay path 
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corresponds to a forwarding delay model. Finally, multiple 
forwarding delay models of the relay node vote on whether 
the node is malicious or not.

4.2  The collection and processing of packet delivery 
and node context information

The packet routing process involves multiple nodes, and 
there may be several malicious nodes among these nodes. 
To accurately find all malicious nodes, the behavior of each 
relay node needs to be detected. Therefore, we collect and 
process the information when the packets pass through each 
relay node. As shown in Fig. 4, the collection and processing 
of packet delivery and node context information consist of 
four main stages: 

1. Collecting packet delivery and node context information.
2. Getting the routing path of each packet.

3. Extracting the samples based on routing paths.
4. Aggregating the samples of relay nodes as datasets.

4.2.1  Collecting packet delivery and node context information

To monitor packet forwarding among the nodes, each node 
maintains the following three tables when sending, for-
warding, and receiving packets:

• Sending Packet Table ( Rtab
send

 ): Each node in Nsensor stores 
Rtab
send

 , which contains three fields: < Pid, Tsend,Nnext > , 
where Pid represents the unique sequence number of 
packets transmitted in the network, Tsend records the 
time of sending packets, and Nnext represents the next-
hop node of packets. Whenever a node sends a packet, 
a record is added to the local Rtab

send
.

• Forwarding Packet Table ( Rtab
forward

 ): All non-leaf nodes 
in Nsensor store Rtab

forward
 , which contains the following 

fields: < Pid , Treceive , Tsend , Nnext , V1 , V2 , … , Vn >. The 

Fig. 3  The flow of baseline 
algorithm

Fig. 4  Packet delivery and node context information collection and processing
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meanings of Pid , Tsend , and Nnext are the same as 
described in Rtab

send
 . Additionally, Treceive records the time 

of receiving packets, and V1,V2,… ,Vn represents the 
context at the time of the packet forwarding, such as 
RSSI, LQI, the number of packets in the Nsensor ’s buffer 
queue, the times of packet collision, the times of 
NOACK during packet sending, and the total time of 
NOACK during packet sending. Every time a node for-
wards a packet to its next-hop node, the above informa-
tion is added to the local Rtab

forward
.

• Receiving Packet Table ( Rtab
receive

 ): Every time the Sink 
successfully receives a packet, it stores three fields: 
< Pid, Sid, Treceive > , where Sid represents the identifica-
tion of the source node obtained from the protocol 
stack. The meanings of Pid and Treceive are the same as 
described in Rtab

forward
.

Due to the limited storage resources of sensor nodes, 
the records in the above tables are overwritten on a first-
in-first-out basis. Meanwhile, Rtab

send
 and Rtab

forward
 stored by 

each node are sent to the Sink at a regular interval.

4.2.2  Getting the routing path of each packet

After the Sink receives Rtab
send

 , Rtab
forward

 , and Rtab
receive

 , we can 
get the routing path of each packet by looking up the above 
tables. Specifically, for a packet Pkti sending from the 
source node Ns to the Sink: we first take out a record 
< Pid, Tsend,Nnext > from Ns ’s Rtab

send
 , and according to Nnext 

of this record, we can find the next-hop node of the route, 
denoted as Nn . In Nn ’s Rtab

forward
 , we find the record where 

Pid = Pkti ’s Pid , and take out Nnext in that record to get the 
next-hop node of the route. Repeat this process until the 
next-hop node is the Sink, and finally, we can get a com-
plete routing path of Pkti.

For example, as shown in Fig. 3, the packet Pkti is sent 
from N1 to NSink through N3 . After the Sink collects the tables 
of all nodes, there exists a record < Pid, Tsend,N3 > in N1 ’s 
Rtab
send

 , and we can know the next-hop node of the route is N3 . 
Then we find out the record < Pid , Treceive , Tsend , NSink , V1 , V2 , 
… , Vn > from N3 ’s Rtab

forward
 , and we can know the next-hop 

node of the route is NSink . Finally, the routing path of Pkti can 
be obtained as: N1 → N3 → NSink.

4.2.3  Extracting the samples based on routing paths

The training samples of forwarding delay models comprise 
node context information (as features) and forwarding delay 
(as a label). The node context information is recorded by the 
relay nodes themselves, while the forwarding delay is 
derived by fusing packet delivery information. How to select 

the appropriate packet delivery information for fusion to 
derive the forwarding delay is an important issue. The mali-
cious nodes may tamper with the receiving or sending time 
of the packets ( Treceive and Tsend in Rtab

forward
 ) recorded by them-

selves. It means the packet delivery information recorded by 
the relay nodes themselves cannot be trusted. Therefore, we 
use the packet delivery information recorded by two neigh-
boring nodes of the relay node to derive the relay node’s 
forwarding delay.

As shown in Fig. 5, packet Pkti is sent from N1 to NSink 
through Nj , Ni , and Nk . When Nj forwards Pkti , a record < 
Pid , Tj

receive
 , Tj

send
 , Ni , V

j

1
 , Vj

2
 , … , Vj

n > is added to Nj ’s 
Rtab
forward

 . When Nk forwards Pkti , a record < Pid , Tk
receive

 , 
Tk
send

 , Nl , Vk
1
 , Vk

2
 , … , Vk

n
 > is added to Nk ’s Rtab

forward
 . The 

forwarding delay TNj

Nk
 of Ni forwarding Pkti is calculated 

from Tj

send
 and Tk

receive
:

There are multiple relay nodes on the packet’s routing 
path, and we extract samples for each relay node separately. 
For example, as shown in Stage 3 of Fig. 4, there are two 
relay nodes in Pkt1 ’s routing path: N2 and N3 . For a relay 
path < N1,N2,N3 > , we can extract N2 ’s node context infor-
mation as a sample. For another relay path < N2,N3,NSink > , 
we can extract N3 ’s node context information as a sample. 
These two samples are used to train the forwarding delay 
models for N2 and N3 , respectively.

4.2.4  Aggregating the samples of relay nodes as datasets

Since time synchronization protocols are vulnerable to time-
delay attacks [14, 43], this paper considers the more general 
case that the nodes are not synchronized in time. Therefore, 
we build different forwarding delay models for relay paths 
and detect them separately. To match each forwarding delay 
model with its training data, we aggregate the samples with 
the same relay path into a dataset for model training. For 
example, as shown in Stage 4 of Fig. 4: for the relay node N2 , 
we aggregate the samples of two relay path ( < N1,N2,N3 > 
and < N1,N2,N4 > ) into two datasets, which are used for the 
training of two different forwarding delay models.

(9)T
Nj

Nk
= Tk

receive
− T

j

send

Fig. 5  The way to obtain the forwarding delay of the relay node
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4.3  Forwarding delay model training and malicious 
node detection

After obtaining the datasets of relay paths, we use them to 
train forwarding delay models. The forwarding delay model 
is trained using classical machine learning algorithms such 
as Support Vector Regression (SVR) and Decision Tree 
(DT). Then, multiple forwarding delay models of the relay 
node vote to decide whether the node is malicious or not. As 
shown in Fig. 6, the training and detection of the forwarding 
delay model can be divided into three main stages:

4.3.1  Training process

A relay node has multiple relay paths, and we build the 
forwarding delay model for each relay path. We randomly 
divide the dataset of relay paths into a training set and a test 
set. The training set is used to train the forwarding delay 
model, and the trained model is tested by the test set. Finally, 
the loss of the model can be obtained, which is denoted 
as losstraining . As shown in Stage 1 of Fig. 6, for the relay 
node Ni , the forwarding delay models are trained sepa-
rately for Ni ’s relay paths: < Nj,Ni,Nk > , < Nj,Ni,Nl > and 
< Nj,Ni,Nm > , and the loss of each model is obtained.

4.3.2  Detection process

Similar to the training process, the Sink collects packet 
delivery and node context information from the IoT network, 

which is processed to obtain multiple detection datasets. 
Each detection dataset is handed over to its corresponding 
forwarding delay model for prediction. Moreover, the loss 
can be calculated based on the predicted and actual values, 
denoted as lossdetection.

4.3.3  Voting for malicious nodes

For each forwarding delay model of Ni , losstraining and 
lossdetection obtained in the training and detection process are 
compared, and their difference is used to vote whether Ni is 
malicious. The final decision that whether Ni is malicious or 
not depends on the voting result of Ni ’s multiple forwarding 
delay models.

5  Detection algorithm based on Node pruning 
and Model fusion for time‑delay attacks

The baseline algorithm collects packet delivery and node 
context information from all nodes to detect malicious nodes, 
which causes unnecessary energy consumption. In fact, 
not all nodes’ information is required to be collected and 
detected. Meanwhile, the time-delay attack has various attack 
patterns. The single machine learning model used in the base-
line algorithm cannot cope well with the different attack pat-
terns, resulting in poor detection performance. To reduce the 
energy consumption and improve the detection performance 
of the baseline algorithm, we designed an efficient Detection 

Fig. 6  Forwarding delay model 
training and detection process
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algorithm based on Node pruning and Model fusion (DNM). 
In this section, we first describe the overall architecture of 
DNM, and then give a detailed description.

5.1  The overall architecture of DNM

The overall architecture of DNM is shown in Fig. 7, which 
consists of two main parts: node pruning and model fusion.

5.1.1  Node pruning

The baseline algorithm collects information from all nodes 
without selectivity, resulting in unnecessary energy con-
sumption. In DNM, we do not directly collect the informa-
tion of all nodes, but first filter out some suspected nodes 
through node pruning instead. Node pruning only uses the 
routing information of packets to filter out suspected nodes 
with a small overhead. First, the Sink groups the received 
packets by their routing paths, and the packets with the same 
routing path are grouped into the same path group. Then, for 
each path group, an outlier detection algorithm is performed 
on the transmission time of each packet. The outlier fre-
quency is used as the basis for assigning a reputation value 
to each relay node in the path group. Finally, by combining 
each relay node’s reputation value in different path groups, 
a global reputation value of the relay node can be obtained. 
The nodes with low global reputation values are considered 
as suspected nodes.

5.1.2  Model fusion

An attacker may execute the time-delay attack with different 
attack probabilities and strengths. A single machine learning 
model used in the baseline algorithm cannot handle com-
plex attack scenarios well, resulting in non-robust results. 
In DNM, we improve the detection performance by model 
fusion. We pick several machine learning models that per-
form well in test sets and combine them into a fusion model. 
For the suspected nodes filtered by node pruning, the Sink 

selectively collects packet delivery and node context infor-
mation from the suspected nodes and processes them into 
datasets. The datasets are then fed into the fusion model to 
determine whether the suspected nodes are malicious.

5.2  Node pruning

The process of node pruning is shown in Fig. 8, which con-
sists of the following four main stages: 

1. Getting the routing path of all packets through light-
weight packet path tracing algorithm.

2. Grouping the packets according to their routing paths.
3. Assigning reputation values to routing paths based on 

the outlier detection results.
4. Aggregating reputation values of the relay nodes.

5.2.1  Getting the routing path of all packets 
through lightweight packet path tracing algorithm

The baseline algorithm uses Nnext in Rtab
forward

 to implement 
packet path tracking (see Section 4.2.2 for details), which 
relies on collecting node context information from all 
nodes and has a significant overhead. To enable packet path 
tracking at a minor cost, we introduced Provenance-enabled 
Packed Path Tracing (PPPT) approach [44] in DNM. PPPT 
is a lightweight packet path tracing scheme. Packet path 
tracking is achieved by querying the relevant information 
stored in each node. Its average power consumption and 
memory overhead are almost negligible [44].

PPPT can obtain the complete path of packets in the net-
work by combining node-level provenance and system-level 
provenance. The node-level provenance is introduced by 
embedding a previous-hop node’s identification and a unique 
sequence number of packets in the corresponding relay node. 
In DNM, we reuse the previous-hop node’s identification 
and the unique sequence number of packets in Rtab

forward
 , 

denoted as Nprevious and Pid . Then Rtab
forward

 has the following 
fields: < Pid , Treceive , Tsend , Nprevious , Nnext , V1 , V2 , … , Vn >. In 

Fig. 7  DNM algorithm flow
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addition to the node-level provenance, a system-level prov-
enance is included to capture the complete packet trace by 
including destination and source node identification pairs.

5.2.2  Grouping the packets according to their routing paths

After getting the routing path of each packet, we group the 
packets according to their routing paths. As shown in 
Stage 2 of Fig. 8, there are two paths from N2 to NSink : N2 
→ N3 → NSink ( Path1N2

 ) and N2 → N4 → NSink ( Path2N2

 ). There-
fore, the packets sent from N2 to NSink are divided into two 
different groups.

5.2.3  Assigning reputation values to routing paths based 
on the outlier detection results

For the transmission time of packets on the same rout-
ing path, the frequency of outliers remains stable even in 
the presence of normal communication delays. However, 
malicious nodes in the path may delay the packet forward-
ing, which can result in more packet transmission time 

outliers in the path. If the outlier frequency of the packet 
transmission time is somewhat higher than the historical 
outlier frequency, the path is considered as a suspected 
path. Based on the outlier detection results, a global repu-
tation value is assigned to relay nodes in the routing path.

Different from the baseline algorithm, Rtab
send

 is no longer 
used in DNM to record the information of packet sending 
time Tsend , instead Tsend is carried in the packet sent by 
each node. The Sink still uses Rtab

receive
 to record the receiv-

ing packet information and Treceive in Rtab
receive

 to record the 
packet receiving time. For a packet Pkt sent to the Sink 
from Ni , the packet transmission time TNi

Sink
 can be obtained 

from TSink
receive

 (the time when the Sink receives Pkt) and Ti
send

 
(the time when Ni sends Pkt ):

We use outlier detection based on Median Absolute 
Deviation (MAD) [45, 46] to detect outliers in the packet 
transmission time. It is a robust method to detect outliers, 
which amplifies the effect of outliers and allows for more 
accurate detection of outliers from normal data.

(10)T
Ni

Sink
= TSink

receive
− T

Ni

send

Fig. 8  Node pruning
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Suppose Ni sends m packets to the Sink through path Pathj
Ni

 . 
The packet transmission time of these packets is X = {T

N
i

Sink1
,

T
N
i

Sink2
,… , T

N
i

Sinkm
} . The MAD is calculated as follows:

where median(X) is the median of X, abs(X − median(X)) 
is the absolute deviation of the data points in X from the 
median of X.

The distance of sequence X from the median(X) based on 
MAD is sequence D = {D1,D2,… ,Di,… ,Dm}:

which is the absolute deviation of the data points from the 
median divided by the median of the absolute deviation 
value sequence. 

D and MAD are used to determine if the data points in X 
are outliers.

If Di > n ×MAD , the data point is considered as an outlier 
and vice versa. n is a settable parameter.

For the path Pathj
Ni

 , the frequency of outlier is denoted as:

where count() is the counting function, count(Di > n ×MAD) 
returns the number of outliers in D, and count(D) is the total 
number of data points in D. The pseudo code for outlier 
frequency calculation is shown in Algorithm 5.2.3.

(11)MAD = median(abs(X − median(X)))

(12)D = abs(X − median(X))∕MAD

(13)
{

The Di is outlier, if Di > n ×MAD

The Di is normal, if Di ≤ n ×MAD

(14)Rate
j

Ni
=

count(Di > n ×MAD)

count(D)

For the path Pathj
Ni

 , we determine whether it is suspected 
based on Ratej

Ni
 in the historical dataset and the latest data-

set. We record Ratej
Ni

 calculated from the historical dataset 
as Ratej

Ni

his
 . When a new detection process is performed, we 

fuse the new dataset with the historical dataset, and Ratej
Ni

 
is calculated as Ratej

Ni

new
.

If Ratej
Ni

new
> Rate

j

Ni

his
 × � , Pathj

Ni
 is considered to be sus-

pected; otherwise, Pathj
Ni

 is considered to be benign. � represents 
the maximum acceptable proportion of outlier frequency.

Due to the diversity of IoT networks routing, there are 
multiple routing paths between source and destination nodes, 
and a node may act as a relay node in multiple routing paths. 
If malicious nodes exist in the network, the paths containing 
these nodes are likely to be attacked. This means that the mali-
cious behavior of the malicious node (forwarding packets with 
delay) is reflected in multiple paths. We can determine whether 
a node is suspected by combining the forwarding behavior of 
the node in multiple paths. Moreover, we use reputation values 
to represent the forwarding behavior of nodes. After packets 
are grouped according to paths, outlier detection is performed 
on each path group. If a path is considered benign after outlier 
detection, it is assigned a positive reputation value; otherwise, 
it is assigned a negative reputation value. A lower reputation 
value helps us find suspected paths, and combining multiple 
suspected paths helps us identify suspected nodes.

The reputation value of routing path Pathj
Ni

 is the number 
of packets passing through Pathj

Ni
 , which is:

where Pktset is the set of packets sent by Ni through Pathj
Ni

 , 
and count(Pktset) is the total number of packets in Pktset.

The reputation value of relay nodes in each relay path is 
the same as that of the path. For example, as shown in Stage 
3 of Fig. 8, Path1

N1

 ’s reputation value is RepuPath1
N1

 . The repu-
tation values of the relay node N2 ( Path1

N1

[2] ) and N3 
( Path1

N1

[3] ) in Path1
N1

 are equal to RepuPath1
N1

.

5.2.4  Aggregating the reputation values of the relay nodes

We can determine whether a relay node is suspected based on 
its global reputation value. The global reputation value of node 
Ni is denoted as ReputationNi

 , and ReputationNi
 is the sum of 

(15)

⎧
⎪⎨⎪⎩

Path
j

Ni
is suspected, if Rate

j

Ni

new
> Rate

j

Ni

his
× 𝛼

Path
j

Ni
is benign, if Rate

j

Ni

new
≤ Rate

j

Ni

his
× 𝛼

(16)

⎧⎪⎨⎪⎩

Repu
Path

j

Ni

= count(Pktset), if Path
j

Ni
is benign

Repu
Path

j

Ni

= −count(Pktset), if Path
j

Ni
is suspected

Algorithm 1 Outlier frequency calculation
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the reputation values of each routing path that contains Ni as 
a relay node. For example, as shown in Stage 4 of Fig. 8. Node 
N2 acts as a relay node in Path1

N1

 , Path2
N1

 , Path3
N1

 , and Path1
N3

 . 
Then the global reputation value of N2 ( ReputationN2

 ) is the 
sum of the four paths’ reputation values: ReputationN2

=

RepuPath1
N1

+ RepuPath2
N1

+ RepuPath3
N1

+ RepuPath1
N3

If ReputationNi
 > 0, Ni is considered as a benign node.

5.3  Model fusion

After filtering out the suspected nodes, it is necessary to detect 
whether the suspected nodes are malicious. Therefore, their 
packet delivery and node context information need to be col-
lected. The Sink processes the information into datasets and 
then hands them over to the machine learning models for 
detection. To improve the performance of the detection algo-
rithm, DNM does not use a single machine learning model for 
detection as in the baseline algorithm. Instead, several machine 
learning models that performed well in historical datasets are 
fused for detection.

5.3.1  Collecting packet delivery and node context information

Unlike the baseline algorithm, the nodes do not need to 
actively send all the information recorded locally to the Sink, 
which causes significant energy consumption. In DNM, only 
when the Sink collects the information in the nodes’ Rtab

forward
 , 

the nodes send a part of the information recorded locally to 
the Sink. For example, for the suspected node Ni , Ni sends 
Pid and V1,V2,… ,Vn (node context information) to the Sink. 
For the auxiliary node Ni−1 of Ni , the records with Nnext equal 
to Ni are filtered. Pid and Tsend of these records are sent to the 
Sink. For the auxiliary node Ni+1 of Ni , the records with 
Nprevious equal to Ni are filtered. Pid and Treceive of these 
records are sent to the Sink. The Sink takes V1,V2, ...,Vn as 
the features of the model, and TNi−1

Ni+1
 calculated by Treceive and 

Tsend as the label of the model. All the obtained records are 
used to determine whether Ni is malicious or not.

5.3.2  Forwarding delay fusion model training 
and malicious node detection

Classical machine learning models include SVR, DT, Linear, 
Random Forest, and others. They have the advantage of low 
complexity and do not require a large amount of data for 
training. In DNM, we use multiple simple machine learning 
models for training and testing, and select a few that perform 
well for detection. We achieve higher accuracy by fusing 

(17)
{

The Ni is normal, if ReputationNi
> 0

The Ni is suspected, if ReputationNi
≤ 0

several simple models. The pseudo code of model fusion is 
shown in Algorithm 2. 

As shown in Fig. 9, the model fusion is divided into four stages: 

1. Training process: Similar to the baseline algorithm, the 
Sink collects packet delivery and node context informa-
tion from some stages that do not suffer from malicious 
attacks. For each relay path of a relay node, the above 
information is extracted as a historical dataset. Then it 
is randomly divided into a training set and a test set in 
a specific ratio. Multiple machine learning models are 
trained using the training set, and the trained models are 
tested by the test set, which ultimately yields the loss 
( losstraining ) of each model for that relay path.

2. Selecting the better performing models: The models that 
perform better in the test set are selected from the sev-
eral machine learning models trained in Stage 1.

3. Detection process: For the suspected nodes to be 
detected, the Sink collects packet delivery and node 
context information from themselves and their neighbor-
ing nodes. For each relay path of the suspected nodes, 
the information is processed into detection sets and then 
handed over to the models (picked out in Stage 2) for 
prediction. The loss of each model can be obtained from 
the predicted and actual values, denote as lossdetectin.

4. Voting for malicious nodes: A single model decides 
whether to vote the relay path as a malicious relay path 
based on the difference between losstraining and lossdetectin . 
Finally, the proportion of malicious relay paths to all 
relay paths in the suspected node is used to decide 
whether the node is malicious or not.

5.4  Complexity analysis

5.4.1  The time complexity of DNM

In this section, we analyze the time complexity of DNM. 
Node pruning and model fusion are discussed separately.

In the node pruning stage, it is assumed that there are 
N sensor nodes and one Sink in the IoT network. The Sink 
node receives packets from M sensor nodes (0 < M ≤ N). 
Assuming that the average number of packets sent by each 
sensor node is k (k > 0), the Sink node receives a total of 
k × M packets. When the packets’ routing path is grouped, 
each packet’s transmission time is calculated, which requires 
traversing all packets with the time complexity O(k × M). 
There are four steps to calculate the outlier frequency of each 
group (see Section 5.2 for details), and each step requires 
traversing all packets once. In summary, the time complexity 
of node pruning is O(5 × k × M).

In the model fusion stage, it is assumed that there are t 
sub-models. The training time complexity of each sub-model 
is Ti (0 < i ≤ t), and the prediction time complexity is Di (0 
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< i ≤ t). For example, the training time complexity of sub-
model linear regression is O( f 2 × n + f 3 ), and the prediction 
time complexity is O(f), where n is the number of training 
samples, n = k × M, and f is the number of features. The time 
complexity when training the model is O(

∑t

i=1
Ti ). From t 

sub-models, r ( 0 < r ≤ t ) better-performing models are 
selected as the fusion model. The time complexity in detect-
ing is O(

∑r

i=1
Di ). Then the model fusion time complexity 

is O(
∑t

i=1
Ti +

∑r

i=1
Di ). In summary, the time complexity 

of DNM is O(5 × k ×M +
∑t

i=1
Ti +

∑r

i=1
Di ), and the worst 

time complexity is O(5 × k × N +
∑t

i=1
Ti +

∑t

i=1
Di).

5.4.2  Comparison with other algorithms

We compare the time complexity of our proposed algo-
rithm (DNM) with two other algorithms: Moussa et al. [26] 
and Ganesh et al. [47]. Moussa et al. calculate the offset 
using the information in the Report message received by 
the node. The whole process requires traversing through all 
the received packets for calculation. Assuming that the total 
number of packets is k ×M , the time complexity can be sim-
plified to O(k ×M ). Ganesh et al. modeled the collected sen-
sor data and delay values using a two-layer LSTM model. In 
a standard LSTM network, the time complexity of the LSTM 
is O(nc × nc × 4 + ni × nc × 4 + nc × no + nc × 3 ) [48], where 
nc is the number of memory cells, ni is the number of input 
units, and no is the number of output units.

The time complexity of DNM is higher than Moussa 
et al. Because we utilize more information to model the rela-
tionship between feature values and delay values through 
machine learning models. Therefore, DNM has better 
detection performance. The learning time of the two-layer 
LSTM model proposed by Ganesh et al. is determined by 
nc × (4 × nc + no) . For tasks that require a large number 
of output units and memory cells, learning LSTM models 
become computationally expensive [48]. In contrast, the 
fusion model in DNM is a combination of simpler machine 
learning models. Generally, it has a lower time complexity 
than the LSTM model with complex structures.

6  Performance evaluation

This section evaluates the baseline algorithm and DNM 
in terms of performance and energy consumption, respec-
tively. (1) Performance comparison evaluation: We first 
show the performance comparison of a single model and the 
fusion model. Owing to the higher detection performance 
of the fusion model, we used the fusion model instead of 
a single model in our subsequent experiments. We then 
explored the effects of attack strength, attack probability, 
malicious node percentage, and the count of nodes on dif-
ferent algorithms(Moussa et al. [26], Ganesh et al. [31], 
baseline and DNM). (2) Energy consumption evaluation: 
Since packet transmission occupies the major overhead of 
node energy consumption [49], we use the count of packets 
transmitted by the detection algorithms to compare energy 
consumption. The energy consumption of the baseline algo-
rithm and DNM are compared before and after the attack 
occurs, respectively.

Algorithm 2 Model fusion detection algorithm
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6.1  Metrics

To comprehensively evaluate the performance of the algo-
rithms, we use accuracy, false alarm rate, recall rate, and 
F1-score as metrics. The accuracy rate reflects the propor-
tion of benign and malicious nodes judged by the algorithms 
that are actually benign and malicious nodes; the false alarm 
rate reflects the proportion of malicious nodes judged by 
the algorithms that are actually benign nodes; the recall rate 
reflects the proportion of benign nodes judged by the algo-
rithms that are actually benign nodes; the F1-score reflects 
the overall performance of the algorithms. Based on Table 2, 
we define accuracy Pa = (TP + TN)∕(P + N) , false alarm 
rate Fa = FP∕(TP + FP) , recall rate R = TP∕(TP + FN) and 
F1-score F1 = 2 × TP∕(2 × TP + FP + FN).

6.2  Environment and parameter settings

As shown in Fig. 10, our experiments are simulated using 
the Cooja simulator [50] of the Contiki platform. The 
nodes are configured with the RPL protocol at the net-
work layer for routing. The physical, link and application 
layers are configured using the standard protocol stack 
of the IoT. All IoT nodes are placed in a rectangular area 
of 300 × 300 m2 and each node has an effective com-
munication range of 50 m. Although the locations of the 

nodes in our network are randomly generated, each node 
is guaranteed to have at least one path to the Sink node.

To avoid bias, we simulate ten rounds for each experi-
ment under ten network topologies. The average value is 
chosen as the final experimental result. We use Python 
and implement all algorithms using the Scikit-learn 
library and PyTorch. Table 3 summarizes the main varia-
bles affecting detection performance. In our experiments, 
we focus on their changes’ effect on the algorithms’ 
detection results.

6.3  Comparison of single model and fusion model

To show the performance difference between single model 
and fusion model, we conducted experiments on the base-
line. As shown in Table 4, we selected 11 machine learning 
models for comparison. We set the upper limits of random 
delay time to 0.05s, 0.1s, 0.15s, 0.2s, and 0.25s, respectively, 
the count of nodes to 20, the percentage of malicious nodes 
to 0.1, and the attack probability to 0.5.

Our results are shown in Fig. 11. It can be seen that 
a single model does not always maintain the best per-
formance under different attack strengths. As shown in 
Fig. 11, the mlp model has the highest Pa and the lowest 
Fa when the upper limit of the random delay time of 0.05 
s. However, the lasso model has the highest Pa and the 

Fig. 9  Forwarding delay fusion 
model training and detection

Table 2  Experimental evaluation Detection result

Malicious Benign Total

Malicious True positive (TP) False negative (FN) P (Real malicious)
Reality Benign False positive (FP) True negative (TN) N (Real benign)

Total P′ (Detect malicious) N′ (Detect begin) P + N
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lowest Fa when the upper limit of the random delay time 
is increased to 0.20 s. The mlp model has the highest R 
when the upper limit of the random delay time is 0.05 s, 
while the liner and ridge models have the highest R when 
the delay time increases to 0.10 s. The mlp model has the 
highest F1 when the upper limit of the random delay time 
is 0.05s, while the lasso model has the highest F1 when 
the delay time is increased to 0.20s. Moreover, Pa , Fa , R 
and F1 of the fusion model consistently outperform most 
other models, especially when the attack strength is getting 
weaker. Because the model fusion method always selects 
the best-performing models in the historical data, it can 
well combine the excellent performance of each model on 
different data.

6.4  Comparison of different algorithms

Due to the lack of research on time-delay attacks in IoT, 
we compare baseline and DNM with the current state-of-
the-art algorithms in PTP [26] and CPS [31].

For time-delay attacks in PTP, Moussa et al. [26] intro-
duce a new PTP event message and calculate the offset 
using the information in the event message received by 
nodes. The calculated offset is expected to adhere to a 
pre-specified threshold, and results above the threshold 
indicate that nodes may suffer from time-delay attacks.

For time-delay attacks in CPS, Ganesh et al. [31] pro-
pose a deep learning-based approach to detect time-delay 
attacks. They design a two-layer LSTM model to process 

Table 3  Parameter and description

Parameter Description

Regression model The type of machine learning model used in the baseline algorithm.
The strength of attack The delay time of a packet when a malicious node performs the time-delay attack against a 

forwarded packet.
The probability of attack The probability that a malicious node performs the time-delay attack against a forwarded packet.
The percentage of malicious nodes The percentage of malicious nodes in the IoT network among all nodes.
The count of nodes The count of nodes in the IoT network.

Fig. 10  The screenshot of the experiment using Cooja emulator
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the raw data stream from CPS sensors. The model’s accu-
racy is measured by the difference between the predicted 
and actual latency, which is used to determine whether 
time-delay attacks exist.

6.4.1  Impact of the strength of attack

In order to evaluate the impact of attack strength on the dif-
ferent algorithms, we set the upper limits of random delay 
time to 0.05s, 0.1s, 0.15s, 0.2s, and 0.25s, respectively., the 
count of nodes to 20, the percentage of malicious nodes to 
0.1, and the attack probability to 0.5.

The experimental results are shown in Fig. 12. As the 
attack strength increases, Pa , R, and F1 of Ganesh et al., 
baseline, and DNM steadily increase; Fa steadily decreases. 
The reason is that the malicious behavior of nodes is more 
obvious relative to normal nodes as the attack strength 
increases. Therefore these algorithms can identify mali-
cious nodes more accurately. Pa , R, and F1 of Moussa et al. 
are low and do not vary significantly under different attack 
strengths, indicating that the algorithm is ineffective in 
detecting malicious nodes. In addition, Pa of DNM is always 
higher than the baseline algorithm; Fa of DNM is always 
lower than the baseline algorithm. The reason is that DNM 
only detects the suspected nodes filtered by node pruning. 
Some benign nodes that would cause false positives by the 
algorithm are not detected. F1 and R of DNM are always 
higher than the baseline, which reflects the better detection 
performance of DNM than the baseline.

6.4.2  Impact of the probability of attack

To evaluate the impact of attack probability, we set the attack 
probability as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively, the 
count of nodes as 20, the percentage of malicious nodes as 
0.1, and the upper limit of delay time as 0.15s.

As shown in Fig. 13, with the increase of attack prob-
ability, Pa , R, and F1 of Ganesh et al., baseline, and DNM 
gradually increases and then remains stable; Fa gradually 
decreases and then remains stable. When the attack probabil-
ity is low, the node’s malicious delay behavior is disguised 
as a normal communication delay. It can affect the arrival of 
packets from other benign nodes upstream of the node. The 
difference in behavior between malicious and benign nodes 
cannot be clearly distinguished, thus resulting in a higher 
false alarm rate. As the probability of attack increases, the 
malicious behavior of the nodes becomes more apparent, so 
these algorithms are able to identify malicious nodes more 
accurately. Moreover, F1 and Pa of DNM are always higher 
than the baseline algorithm; Fa of DNM is always lower than 
the baseline algorithm. This result reflects that EMFA’s node 
pruning helps to identify malicious nodes more accurately.

6.4.3  Impact of the percentage of malicious nodes

In order to evaluate the impact of the percentage of mali-
cious nodes on the different algorithms’ detection perfor-
mance, we set the malicious node percentage to 0.05, 0.1, 
0.15, 0.2, and 0.25, respectively, the count of nodes to 20, 
the attack probability to 0.5, and the upper limit of delay 
time to 0.15s.

As shown in Fig. 14, our results demonstrate that as the 
percentage of malicious nodes increases, Pa , R of DNM and 
baseline remain basically stable, and Fa gradually decreases. 
We can notice that Fa of DNM is smaller than that of the 
baseline and other algorithms. The reason is that as the per-
centage of malicious nodes increases, the count of malicious 
nodes increases. Malicious nodes’ malicious behavior affects 
more routing paths, which gives DNM more available path 
information. Combining more routing paths allows DNM 
to filter out suspicious nodes more accurately. Malicious 
node detection is performed only for these suspicious nodes, 
thus reducing Fa . In addition, as the percentage of malicious 
nodes increases, the F1 of DNM remains stable and higher 
than the baseline, reflecting that DNM can still show high 
robustness under different attack modes. The F1 of Ganesh 
et al. tends to increase gradually, indicating that the algo-
rithm’s overall performance increases with the number of 
malicious nodes.

6.4.4  Impact of the count of nodes

To evaluate the impact of nodes’ count on the detection per-
formance, we set the count of nodes to 10, 15, 20, 25, and 
30, respectively. The malicious node percentage is set to 
0.1, and the count of malicious nodes is set to 1, 2, 2, 3, and 
3, respectively. The attack probability is set to 0.5, and the 
upper limit of delay time is set to 0.15s.

Table 4  Model notations

Parameter Description

linear Linear model
svr Support Vector Regression model
mlp Multilayer Perceptron model
dt Decision Tree model
ridge Ridge model
lasso Lasso model
rf Random Forest model
adaboost Adaboost model
gbdt Gradient Boosting Regression Tree model
bagging Bagging model
xgb XGBoost model
fm Fusion model
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Fig. 11  The comparison of single model and model fusion in baseline algorithm
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Our results are shown in Fig. 15: Pa , Fa , and F1 of the 
baseline algorithm and DNM remain basically stable as the 
count of nodes increases, indicating that both the baseline 
algorithm and DNM can maintain good detection perfor-
mance in networks of different sizes. As the count of nodes 

increases, more packets are transmitted in the network. 
Packet collisions, retransmissions, and forwarding after 
waiting in the buffer queue occur more frequently during 
transmission. These scenarios can lead to longer packet rout-
ing times. Moreover, the larger the network size, the more 

Fig. 12  The impact of the 
strength of attack

Fig. 13  The impact of the prob-
ability of attack
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complex this situation becomes, leading to a slight degrada-
tion in the algorithm’s overall performance. Since Ganesh 
et al., baseline and DNM both take into account these factors 
affecting the routing time and use them as features for the 
training of the model. Therefore, they all show better detec-
tion performance than Moussa et al. in different node sizes.

6.4.5  The summary of performance comparison

From the above experiments in different environments, we 
can find that the overall detection performance of baseline 
and DNM is better than that of Moussa et al. and Ganesh 
et al. The specific reasons are as follows:

Moussa et al. [26] assume that the communication path 
between the master and the slave node is symmetric. In 
other words, the packets sent from the master node to the 
slave node pass through the same path as the packets from 
the slave node to the master node. However, this assump-
tion does not hold true in multi-hop IoT. Because there may 
be multiple paths between two nodes in the multi-hop IoT, 
packets are selected for the best route based on the routing 
protocol. Therefore, the packet transmission path between 
two nodes may change due to network topology and environ-
ment changes. Moreover, since the network structure of PTP 
is relatively simple, they only consider the time character-
istics. In contrast, the network structure of multi-hop IoT is 
complex, and the forwarding delay of packets is affected by 
many factors (e.g., the times of packet collisions, the time 

that packets wait in the buffer, etc.). It is difficult to deter-
mine whether a node is under attack by considering only the 
time characteristic.

Ganesh et al. [31] utilize a two-layer LSTM model with 
a complex network structure to model the relationship 
between delay values and various features. Thus, their detec-
tion method performs better than Moussa et al. and is close 
to baseline (modeling using machine learning). In CPS, most 
packets are transmitted between the fixed controller and the 
actuators (sensors). The packet transmission path between 
two nodes is fixed, and the packet transmission is continu-
ous. Therefore there may be an implicit delay pattern, which 
can be learned using the LSTM model with forgetting, input, 
and output gates. While in multi-hop IoT, the path of packet 
transmission is variable, and the nodes receive discontinuous 
packets from different nodes due to the changing network 
environment. This situation is common in multi-hop IoT. 
Therefore it is difficult for the LSTM model to learn the 
implicit delay patterns in multi-hop IoT.

The detection performance of baseline and DNM is gen-
erally similar. However, DNM filters out suspected nodes 
and performs detection only for suspected nodes. Since 
DNM uses node pruning to remove nodes that may cause 
false positives in advance, DNM has a lower Fa and higher R 
than the baseline in different environments. Therefore DNM 
has a higher F1 score. In addition, node pruning signifi-
cantly reduces the algorithm’s detection overhead, as dem-
onstrated in the subsequent experiments.

Fig. 14  The impact of the per-
centage of malicious nodes
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6.5  Comparison of energy consumption 
for the baseline algorithm and DNM

We compare the extra energy consumption of the baseline 
algorithm and DNM from two perspectives, before and after 
the attack occurs.

6.5.1  Comparison of detection packets collected 
before the attack

We compared the count of detection packets required to be 
transmitted by the baseline algorithm and DNM in the same 
time when no attack occurs, which characterizes the energy 
consumption of the algorithms under normal conditions. We 
set the upper limit of the random delay time to 0.15s, the 
count of nodes to 20, the percentage of malicious nodes to 
0.1, and the attack probability to 0.5.

Our results are shown in Fig. 16. According to obtained 
results, we can find that as the count of nodes in the net-
work increases, the count of detection packets transmitted 
by the baseline algorithm and DNM shows an incremental 
trend. However, the count of detection packets transmitted 
by DNM is much smaller than that of the baseline algorithm. 
In the case of 30 nodes, the count of detection packets DNM 
needs to transmit is only about 7% of the baseline algorithm. 
This reason is that the baseline algorithm detects all non-
leaf nodes, and each node sends all the data recorded by it. 
In contrast, DNM detects only the suspected nodes through 
node pruning, which significantly reduces the transmission 

of packets required for algorithm detection. Moreover, node 
pruning is based on PPPT, and the extra overhead brought 
by PPPT is negligible compared to the energy consumed by 
normal packet transmission [44]. Therefore, DNM achieves 
low energy consumption overhead compared to the baseline 
algorithm by node pruning.

6.5.2  Comparison of detection packets collected 
after the attack

We compared the amount of detection packets required to 
be transmitted by the baseline algorithm and DNM after the 
attack occurred. We set the upper limit of the random delay 

Fig. 15  The impact of the count 
of nodes

Fig. 16  The count of nodes detected before the attack
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time to 0.15s, the count of nodes to 20, the percentage of 
malicious nodes to 0.1, and the attack probability to 0.5.

The count of nodes detected by the baseline algorithm 
and DNM for different attack strengths is illustrated in 
Fig. 17. It can be seen that the count of nodes to be detected 
in the baseline algorithm is stable at around 16, which is the 
count of non-leaf nodes in the network involved in the packet 
forwarding process. The count of nodes to be detected in 
DNM is stable at around 4 due to the node pruning mecha-
nism, which dramatically reduces the count of nodes to be 
detected compared to the baseline algorithm.

As shown in Fig. 18, it shows that the baseline algorithm 
and DNM at different attack strengths: (1) The ratio of the 
count of nodes detected; (2) The ratio of the count of addi-
tional packets to be transmitted for detection. As the attack 
strength increases, the detection performance of both algo-
rithms tends to stabilize, and the ratios also tend to stabilize. 
The count of detection packets required by DNM is only 

about 15% of the baseline algorithm’s requirements. The 
ratio of packets required by DNM is significantly smaller 
than that of detected nodes because the baseline algorithm 
collects all the data stored in the nodes. In contrast, DNM 
only collects some of the data stored in the nodes. These data 
are necessary to be used directly to detect malicious nodes.

7  Conclusion and future work

The detection of time-delay attacks in IoT networks is an 
open problem. In this paper, we propose the baseline algo-
rithm and DNM, respectively. The baseline algorithm builds 
machine learning models for all nodes without selectivity, 
which leads to significant energy consumption. In contrast, 
DNM relies on node pruning to detect only suspected nodes, 
thus reducing energy consumption. Moreover, DNM also 
achieves higher detection performance than the baseline 
algorithm by model fusion. The experimental results show 
that both the baseline algorithm and DNM have good detec-
tion performance. DNM has a higher detection performance 
and smaller overhead than the baseline algorithm.

The overhead of our detection algorithms relies on the 
forwarding features recorded by the nodes, and sending 
these features to the Sink for centralized analysis is a non-
negligible overhead. Therefore, how to use as few features 
as possible or fuse features would be an optimization direc-
tion. Furthermore, various attack variants of the time-delay 
attack would be further investigated, such as selective 
delayed packets and delayed ack message packet delivery. 
These attack variants are more difficult to detect. As well as 
the hybrid attacks combining time-delay attacks with other 
attacks would also be a future research direction.

Author contributions Wenjie Zhao: Conceptualization, Data curation, 
Software, Formal analysis, Methodology, Writing - original draft, Writing -  
review & editing. Yu Wang: Investigation, Methodology, Software, 
Writing - original draft. Wenbin Zhai: Conceptualization, Resources, 
Funding acquisition, Project administration, Supervision, Writing - 
review & editing. Liang Liu: Methodology, Formal analysis, Supervision, 
Writing - review & editing. Yulei Liu: Writing - review & editing.

Funding This work is supported by the National Key R &D Pro-
gram of China under No. 2021YFB2700500 and 2021YFB2700502, 
the Open Fund of Key Laboratory of Civil Aviation Smart Airport 
Theory and System, Civil Aviation University of China under No. 
SATS202206, the National Natural Science Foundation of China under 
No. U20B2050, Public Service Platform for Basic Software and Hard-
ware Supply Chain Guarantee under No. TC210804A.

Data availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on 
reasonable request.

Declarations 

Ethics approval Not applicable.

Fig. 17  The count of nodes detected after the attack

Fig. 18  The ratio of DNM to baseline algorithm after the attack: the count 
of detected nodes and the count of additional detected packets transmitted



1308 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

Consent to publish All of the authors have approved the contents of 
this paper and have agreed to the submission policies of Peer-to-Peer 
Networking and Applications.

Conflict of interest We declare that we have no competing financial 
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

 1. Aheleroff S, Xu X, Lu Y, Aristizabal M, Velásquez JP, Joa B, 
Valencia Y (2020) Iot-enabled smart appliances under industry 
4.0: A case study. Adv Eng Inform 43. https:// doi. org/ 10. 1016/j. 
aei. 2020. 101043

 2. Viswanath SK, Yuen C, Tushar W, Li W-T, Wen C-K, Hu K, 
Chen C, Liu X (2016) System design of the internet of things for 
residential smart grid. IEEE Wirel Commun 23(5):90–98. https:// 
doi. org/ 10. 1109/ MWC. 2016. 77217 47

 3. Fang S, Da Xu L, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014) 
An integrated system for regional environmental monitoring and 
management based on internet of things. IEEE Trans Industr Inf 
10(2):1596–1605. https:// doi. org/ 10. 1109/ TII. 2014. 23026 38

 4. Wang D, Chen D, Song B, Guizani N, Yu X, Du X (2018) From 
iot to 5g i-iot: The next generation iot-based intelligent algorithms 
and 5g technologies. IEEE Commun Mag 56(10):114–120. https:// 
doi. org/ 10. 1109/ MCOM. 2018. 17013 10

 5. Pokhrel SR, Vu HL, Cricenti AL (2019) Adaptive admission con-
trol for iot applications in home wifi networks. IEEE Trans Mob 
Comput 19(12):2731–2742. https:// doi. org/ 10. 1109/ TMC. 2019. 
29357 19

 6. Li Y, Chi Z, Liu X, Zhu T (2018). Passive-zigbee: Enabling zigbee 
communication in iot networks with 1000x+ less power consump-
tion. In: Proceedings of the 16th ACM Conference on Embedded 
Networked Sensor Systems, pp. 159–171. https:// doi. org/ 10. 1145/ 
32747 83. 32748 46

 7. Kim H-S, Ko J, Culler DE, Paek J (2017) Challenging the ipv6 
routing protocol for low-power and lossy networks (rpl): A survey. 
IEEE Commun Surv Tutorials 19(4):2502–2525. https:// doi. org/ 
10. 1109/ COMST. 2017. 27516 17

 8. Deogirikar J, Vidhate A (2017) Security attacks in iot: A survey. 
In: 2017 International Conference on I-SMAC (IoT in Social, 
Mobile, Analytics and Cloud)(I-SMAC), pp. 32–37. https:// doi. 
org/ 10. 1109/I- SMAC. 2017. 80583 63

 9. Stellios I, Kotzanikolaou P, Psarakis M, Alcaraz C, Lopez J (2018) 
A survey of iot-enabled cyberattacks: Assessing attack paths to 
critical infrastructures and services. IEEE Commun Surv Tutorials 
20(4):3453–3495. https:// doi. org/ 10. 1109/ COMST. 2018. 28555 63

 10. Prathapchandran K, Janani T (2021) A trust aware security mecha-
nism to detect sinkhole attack in rpl-based iot environment using 
random forest-rftrust. Comput Netw 198:108413. https:// doi. org/ 
10. 1016/j. comnet. 2021. 108413

 11. Divya K, Jaipriya S, Anitha G, Malathy S, Maheswar R (2018) An 
energy efficient technique for time sensitive application using mc-
wsn. In: 2018 2nd International Conference on Inventive Systems 
and Control (ICISC), pp. 1451–1455. https:// doi. org/ 10. 1109/ 
ICISC. 2018. 83990 48

 12. Poe WY, Schmitt JB (2008) Placing multiple sinks in time-sensitive 
wireless sensor networks using a genetic algorithm. In: 14th GI/ITG 
Conference-Measurement, Modelling and Evalutation of Computer 
and Communication Systems, pp. 1–15

 13. Korala H, Georgakopoulos D, Jayaraman PP, Yavari A (2022) A 
survey of techniques for fulfilling the time-bound requirements 

of time-sensitive iot applications. ACM Comput Surv. https:// doi. 
org/ 10. 1145/ 35104 11

 14. Song H, Zhu S, Cao G (2007) Attack-resilient time synchroniza-
tion for wireless sensor networks. Ad Hoc Netw 5(1):112–125. 
https:// doi. org/ 10. 1016/j. adhoc. 2006. 05. 016

 15. Lee JH, Shin J, Realff MJ (2018) Machine learning: Overview 
of the recent progresses and implications for the process systems 
engineering field. Comput Chem Eng 114:111–121. https:// doi. 
org/ 10. 1016/j. compc hemeng. 2017. 10. 008

 16. Chen Z, Liu J, Shen Y, Simsek M, Kantarci B, Mouftah HT, Djukic 
P (2022) Machine learning-enabled iot security: Open issues and 
challenges under advanced persistent threats. ACM Comput Surv 
55(5):1–37. https:// doi. org/ 10. 1145/ 35308 12

 17. Huang X, Wu Y (2022) Identify selective forwarding attacks using 
danger model: Promote the detection accuracy in wireless sensor 
networks. IEEE Sens J 22(10):9997–10008. https:// doi. org/ 10. 
1109/ JSEN. 2022. 31666 01

 18. Ding J, Wang H, Wu Y (2022) The detection scheme against 
selective forwarding of smart malicious nodes with reinforcement 
learning in wireless sensor networks. IEEE Sens J 22(13):13696–
13706. https:// doi. org/ 10. 1109/ JSEN. 2022. 31764 62

 19. Chen X, Feng W, Luo Y, Shen M, Ge N, Wang X (2022) Defend-
ing against link flooding attacks in internet of things: A bayesian 
game approach. IEEE Internet Things J 9(1):117–128. https:// doi. 
org/ 10. 1109/ JIOT. 2021. 30935 38

 20. Srinivas TAS, Manivannan S (2020) Prevention of hello flood 
attack in iot using combination of deep learning with improved 
rider optimization algorithm. Comput Commun 163:162–175. 
https:// doi. org/ 10. 1016/j. comcom. 2020. 03. 031

 21. Teng Z, Du C, Li M, Zhang H, Zhu W (2022) A wormhole attack 
detection algorithm integrated with the node trust optimization 
model in wsns. IEEE Sens J 22(7):7361–7370. https:// doi. org/ 10. 
1109/ JSEN. 2022. 31528 41

 22. Pu C, Choo K-KR (2022) Lightweight sybil attack detection in iot 
based on bloom filter and physical unclonable function. Comput 
Secur 113:102541. https:// doi. org/ 10. 1016/j. cose. 2021. 102541

 23. Alghamdi R, Bellaiche M (2023) A cascaded federated deep 
learning based framework for detecting wormhole attacks in iot 
networks. Comput Secur 125:103014. https:// doi. org/ 10. 1016/j. 
cose. 2022. 103014

 24. Kim J-D, Ko M, Chung J-M (2022) Physical identification based 
trust path routing against sybil attacks on rpl in iot networks. IEEE 
Wireless Commun Lett 11(5):1102–1106. https:// doi. org/ 10. 1109/ 
LWC. 2022. 31578 31

 25. Moradi M, Jahangir AH (2021) A new delay attack detection 
algorithm for ptp network in power substation. Int J Electr Power 
Energy Syst 133:107226. https:// doi. org/ 10. 1016/j. ijepes. 2021. 
107226

 26. Moussa B, Kassouf M, Hadjidj R, Debbabi M, Assi C (2020) An 
extension to the precision time protocol (ptp) to enable the detec-
tion of cyber attacks. IEEE Trans Industr Inf 16(1):18–27. https:// 
doi. org/ 10. 1109/ TII. 2019. 29439 13

 27. Wang J, Peng C (2017) Analysis of time delay attacks against power 
grid stability. In: Proceedings of the 2nd Workshop on Cyber-Physical 
Security and Resilience in Smart Grids, pp. 67–72. https:// doi. org/ 10. 
1145/ 30553 86. 30553 92

 28. De Pace G, Wang Z, Benin J, He H, Sun Y (2020) Evaluation of 
communication delay based attack against the smart grid. In: 2020 
IEEE Kansas Power and Energy Conference (KPEC), pp. 1–6. 
https:// doi. org/ 10. 1109/ KPEC4 7870. 2020. 91675 43

 29. Lou X, Tran, C, Yau DK, Tan R, Ng H, Fu, TZ, Winslett M 
(2019) Learning-based time delay attack characterization for 
cyber-physical systems. In: 2019 IEEE International Conference 
on Communications, Control, and Computing Technologies for 
Smart Grids (SmartGridComm), pp. 1–6 . https:// doi. org/ 10. 
1109/ Smart GridC omm. 2019. 89097 32

https://doi.org/10.1016/j.aei.2020.101043
https://doi.org/10.1016/j.aei.2020.101043
https://doi.org/10.1109/MWC.2016.7721747
https://doi.org/10.1109/MWC.2016.7721747
https://doi.org/10.1109/TII.2014.2302638
https://doi.org/10.1109/MCOM.2018.1701310
https://doi.org/10.1109/MCOM.2018.1701310
https://doi.org/10.1109/TMC.2019.2935719
https://doi.org/10.1109/TMC.2019.2935719
https://doi.org/10.1145/3274783.3274846
https://doi.org/10.1145/3274783.3274846
https://doi.org/10.1109/COMST.2017.2751617
https://doi.org/10.1109/COMST.2017.2751617
https://doi.org/10.1109/I-SMAC.2017.8058363
https://doi.org/10.1109/I-SMAC.2017.8058363
https://doi.org/10.1109/COMST.2018.2855563
https://doi.org/10.1016/j.comnet.2021.108413
https://doi.org/10.1016/j.comnet.2021.108413
https://doi.org/10.1109/ICISC.2018.8399048
https://doi.org/10.1109/ICISC.2018.8399048
https://doi.org/10.1145/3510411
https://doi.org/10.1145/3510411
https://doi.org/10.1016/j.adhoc.2006.05.016
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1145/3530812
https://doi.org/10.1109/JSEN.2022.3166601
https://doi.org/10.1109/JSEN.2022.3166601
https://doi.org/10.1109/JSEN.2022.3176462
https://doi.org/10.1109/JIOT.2021.3093538
https://doi.org/10.1109/JIOT.2021.3093538
https://doi.org/10.1016/j.comcom.2020.03.031
https://doi.org/10.1109/JSEN.2022.3152841
https://doi.org/10.1109/JSEN.2022.3152841
https://doi.org/10.1016/j.cose.2021.102541
https://doi.org/10.1016/j.cose.2022.103014
https://doi.org/10.1016/j.cose.2022.103014
https://doi.org/10.1109/LWC.2022.3157831
https://doi.org/10.1109/LWC.2022.3157831
https://doi.org/10.1016/j.ijepes.2021.107226
https://doi.org/10.1016/j.ijepes.2021.107226
https://doi.org/10.1109/TII.2019.2943913
https://doi.org/10.1109/TII.2019.2943913
https://doi.org/10.1145/3055386.3055392
https://doi.org/10.1145/3055386.3055392
https://doi.org/10.1109/KPEC47870.2020.9167543
https://doi.org/10.1109/SmartGridComm.2019.8909732
https://doi.org/10.1109/SmartGridComm.2019.8909732


1309Peer-to-Peer Networking and Applications (2023) 16:1286–1309 

1 3

 30. Abbasspour A, Sargolzaei A, Victorio M, Khoshavi N (2020) A 
neural network-based approach for detection of time delay switch 
attack on networked control systems. Procedia Computer Science 
168:279–288. https:// doi. org/ 10. 1016/j. procs. 2020. 02. 250

 31. Ganesh P, Lou X, Chen Y, Tan R, Yau DKY, Chen D, Winslett M 
(2021) Learning-based simultaneous detection and characteriza-
tion of time delay attack in cyber-physical systems. IEEE Trans 
Smart Grid 12(4):3581–3593. https:// doi. org/ 10. 1109/ TSG. 2021. 
30586 82

 32. Sargolzaei A, Yen KK, Abdelghani MN (2015) Preventing time-
delay switch attack on load frequency control in distributed power 
systems. IEEE Trans Smart Grid 7(2):1176–1185. https:// doi. org/ 
10. 1109/ TSG. 2015. 25034 29

 33. Victorio M, Sargolzaei A, Khalghani MR (2021) A secure control 
design for networked control systems with linear dynamics under 
a time-delay switch attack. Electronics 10(3):322. https:// doi. org/ 
10. 3390/ elect ronic s1003 0322

 34. Altaf A, Abbas H, Iqbal F, Khan MMZM, Rauf A, Kanwal T 
(2021) Mitigating service-oriented attacks using context-based 
trust for smart cities in iot networks. J Syst Archit 115:102028. 
https:// doi. org/ 10. 1016/j. sysarc. 2021. 102028

 35. Mabodi K, Yusefi M, Zandiyan S, Irankhah L, Fotohi R (2020) 
Multi-level trust-based intelligence schema for securing of inter-
net of things (iot) against security threats using cryptographic 
authentication. J Supercomput 76(9):7081–7106. https:// doi. org/ 
10. 1007/ s11227- 019- 03137-5

 36. Liu L, Ma Z, Meng W (2019) Detection of multiple-mix-attack 
malicious nodes using perceptron-based trust in iot networks. 
Futur Gener Comput Syst 101:865–879. https:// doi. org/ 10. 1016/j. 
future. 2019. 07. 021

 37. Liu L, Xu X, Liu Y, Ma Z, Peng J (2021) A detection framework 
against cpma attack based on trust evaluation and machine learn-
ing in iot network. IEEE Internet Things J 8(20):15249–15258. 
https:// doi. org/ 10. 1109/ JIOT. 2020. 30476 42

 38. Ma Z, Liu L, Meng W (2020) Towards multiple-mix-attack detec-
tion via consensus-based trust management in iot networks. Com-
put Secur 96:101898. https:// doi. org/ 10. 1016/j. cose. 2020. 101898

 39. Singh M, Sardar AR, Majumder K, Sarkar SK (2017) A light-
weight trust mechanism and overhead analysis for clustered wsn. 
IETE J Res 63(3):297–308. https:// doi. org/ 10. 1080/ 03772 063. 
2017. 12846 13

 40. Poongodi T, Khan MS, Patan R, Gandomi AH, Balusamy B 
(2019) Robust defense scheme against selective drop attack in 
wireless ad hoc networks. IEEE Access 7:18409–18419. https:// 
doi. org/ 10. 1109/ ACCESS. 2019. 28960 01

 41. Eskandari M, Janjua ZH, Vecchio M, Antonelli F (2020) Passban 
ids: An intelligent anomaly-based intrusion detection system for 

iot edge devices. IEEE Internet Things J 7(8):6882–6897. https:// 
doi. org/ 10. 1109/ JIOT. 2020. 29705 01

 42. Nguyen TD, Marchal, S, Miettinen M, Fereidooni H, Asokan 
N, Sadeghi AR (2019) Dïot: A federated self-learning anomaly 
detection system for iot. In: 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pp. 756–767. 
https:// doi. org/ 10. 1109/ ICDCS. 2019. 00080

 43. Moussa B, Debbabi M, Assi C (2016) A detection and mitigation 
model for ptp delay attack in an iec 61850 substation. IEEE Trans 
Smart Grid 9(5):3954–3965. https:// doi. org/ 10. 1109/ TSG. 2016. 
26446 18

 44. Suhail S, Hussain R, Abdellatif M, Pandey SR, Khan A, Hong CS 
(2020) Provenance-enabled packet path tracing in the rpl-based 
internet of things. Comput Netw 173:107189. https:// doi. org/ 10. 
1016/j. comnet. 2020. 107189

 45. Rousseeuw PJ, Croux C (1993) Alternatives to the median abso-
lute deviation. J Am Stat Assoc 88(424):1273–1283. https:// doi. 
org/ 10. 1080/ 01621 459. 1993. 10476 408

 46. Chen Z, Song S, Wei Z, Fang J, Long J (2021) Approximating 
median absolute deviation with bounded error. Proceedings of the 
VLDB Endowment 14(11):2114–2126. https:// doi. org/ 10. 14778/ 
34762 49. 34762 66

 47. Ganesh P, Lou X, Chen Y, Tan R, Yau DK, Chen D, Winslett M 
(2021) Learning-based simultaneous detection and characteriza-
tion of time delay attack in cyber-physical systems. IEEE Trans 
Smart Grid 12(4):3581–3593. https:// doi. org/ 10. 1109/ TSG. 2021. 
30586 82

 48. Sak H, Senior AW, Beaufays F (2014) Long short-term memory 
recurrent neural network architectures for large scale acoustic 
modeling. In: INTERSPEECH, pp. 338–342

 49. Ganti RK, Jayachandran P, Luo H, Abdelzaher TF (2006) Datalink 
streaming in wireless sensor networks. In: Proceedings of the 4th 
International Conference on Embedded Networked Sensor Sys-
tems, pp. 209–222. http:// doi. org/ 10. 1145/ 11828 07. 11828 29

 50. Osterlind F, Dunkels A, Eriksson, J, Finne N, Voigt T (2006) 
Cross-level sensor network simulation with cooja. In: Proceed-
ings. 2006 31st IEEE Conference on Local Computer Networks, 
pp. 641–648. https:// doi. org/ 10. 1109/ LCN. 2006. 322172

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.procs.2020.02.250
https://doi.org/10.1109/TSG.2021.3058682
https://doi.org/10.1109/TSG.2021.3058682
https://doi.org/10.1109/TSG.2015.2503429
https://doi.org/10.1109/TSG.2015.2503429
https://doi.org/10.3390/electronics10030322
https://doi.org/10.3390/electronics10030322
https://doi.org/10.1016/j.sysarc.2021.102028
https://doi.org/10.1007/s11227-019-03137-5
https://doi.org/10.1007/s11227-019-03137-5
https://doi.org/10.1016/j.future.2019.07.021
https://doi.org/10.1016/j.future.2019.07.021
https://doi.org/10.1109/JIOT.2020.3047642
https://doi.org/10.1016/j.cose.2020.101898
https://doi.org/10.1080/03772063.2017.1284613
https://doi.org/10.1080/03772063.2017.1284613
https://doi.org/10.1109/ACCESS.2019.2896001
https://doi.org/10.1109/ACCESS.2019.2896001
https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/TSG.2016.2644618
https://doi.org/10.1109/TSG.2016.2644618
https://doi.org/10.1016/j.comnet.2020.107189
https://doi.org/10.1016/j.comnet.2020.107189
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.14778/3476249.3476266
https://doi.org/10.14778/3476249.3476266
https://doi.org/10.1109/TSG.2021.3058682
https://doi.org/10.1109/TSG.2021.3058682
http://doi.org/10.1145/1182807.1182829
https://doi.org/10.1109/LCN.2006.322172

	Efficient time-delay attack detection based on node pruning and model fusion in IoT networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Internal attacks in IoT
	2.2 Time-delay attack
	2.3 Detection based on trust value mechanism

	3 System model
	3.1 Network Model
	3.2 Attack model

	4 Baseline detection algorithm for time-delay attacks
	4.1 The framework of baseline algorithm
	4.1.1 The collection and processing of packet delivery and node context information (see Section 4.2 for details)
	4.1.2 Forwarding delay model training and malicious node detection (see Section 4.3 for details)

	4.2 The collection and processing of packet delivery and node context information
	4.2.1 Collecting packet delivery and node context information
	4.2.2 Getting the routing path of each packet
	4.2.3 Extracting the samples based on routing paths
	4.2.4 Aggregating the samples of relay nodes as datasets

	4.3 Forwarding delay model training and malicious node detection
	4.3.1 Training process
	4.3.2 Detection process
	4.3.3 Voting for malicious nodes


	5 Detection algorithm based on Node pruning and Model fusion for time-delay attacks
	5.1 The overall architecture of DNM
	5.1.1 Node pruning
	5.1.2 Model fusion

	5.2 Node pruning
	5.2.1 Getting the routing path of all packets through lightweight packet path tracing algorithm
	5.2.2 Grouping the packets according to their routing paths
	5.2.3 Assigning reputation values to routing paths based on the outlier detection results
	5.2.4 Aggregating the reputation values of the relay nodes

	5.3 Model fusion
	5.3.1 Collecting packet delivery and node context information
	5.3.2 Forwarding delay fusion model training and malicious node detection

	5.4 Complexity analysis
	5.4.1 The time complexity of DNM
	5.4.2 Comparison with other algorithms


	6 Performance evaluation
	6.1 Metrics
	6.2 Environment and parameter settings
	6.3 Comparison of single model and fusion model
	6.4 Comparison of different algorithms
	6.4.1 Impact of the strength of attack
	6.4.2 Impact of the probability of attack
	6.4.3 Impact of the percentage of malicious nodes
	6.4.4 Impact of the count of nodes
	6.4.5 The summary of performance comparison

	6.5 Comparison of energy consumption for the baseline algorithm and DNM
	6.5.1 Comparison of detection packets collected before the attack
	6.5.2 Comparison of detection packets collected after the attack


	7 Conclusion and future work
	References


