
Vol:.(1234567890)

Peer-to-Peer Networking and Applications (2023) 16:1286–1309
https://doi.org/10.1007/s12083-023-01477-x

1 3

Efficient time‑delay attack detection based on node pruning
and model fusion in IoT networks

Wenjie Zhao1 · Yu Wang2 · Wenbin Zhai1 · Liang Liu1 · Yulei Liu1

Received: 6 December 2022 / Accepted: 10 March 2023 / Published online: 30 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
IoT devices are vulnerable to various attacks because they are resource-limited. This paper introduces a novel type of attack
called time-delay attack. The malicious nodes delay packet forwarding by extending the processing time of packets, thus
affecting the performance and availability of the network. This attack is very stealthy and difficult to detect because it does
not violate any communication protocol. To the best of our knowledge, how to detect the time-delay attack in IoT networks
is still an open problem. We first propose a machine learning-based baseline algorithm to detect the time-delay attack. It
models the system features of each node and the forwarding time of packets to detect whether a node is malicious or not.
However, the baseline algorithm needs to detect all nodes in the network, which causes unnecessary resource consumption.
Moreover, using a single model in the baseline algorithm does not have high robustness. To reduce the overhead and improve
the detection performance, we design an efficient Detection algorithm based on Node pruning and Model fusion (DNM).
DNM uses node pruning to filter out suspected nodes from all nodes. The suspected nodes are then detected according to a
fusion model. We conduct experimental evaluations based on the Cooja network simulator. The experimental results show
that baseline and DNM possess close to 90% accuracy, and DNM significantly outperforms other algorithms with an aver-
age F1-score of 0.85.

Keywords IoT network · Malicious node detection · Time-delay attack · Model fusion

1 Introduction

With the development of sensors, wireless networks, and
embedded computing, the Internet of Things (IoT) indus-
try is rapidly developing and expanding. As a widespread

infrastructure, IoT has been widely used in several fields,
such as smart homes [1], smart grids [2], environmental
monitoring [3], national defense, and so on.

In IoT networks, the communication range of a single
sensor device (or a node) is limited. When a node transmits
packets to another node outside the communication range,
it is necessary to rely on other nodes within the communi-
cation range for forwarding. Nodes can communicate with
each other by utilizing various IoT technologies and proto-
cols (e.g., 5G [4], WiFi [5], ZigBee [6]), forming a multi-
hop IoT network. The multi-hop nature of IoT networks pro-
vides excellent flexibility in routing, and nodes acting as
packet relays can find the optimal next hop through routing
protocols, such as IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) [7]. However, the nodes are usually
resource-constrained. They are at risk of being attacked by
attackers and hijacked as malicious nodes. Malicious nodes
can perform deliberate actions such as dropping, tamper-
ing, and replaying packets during packet transmission, thus
destroying the stability and availability of the networks [8,
9]. Therefore, how to ensure the security of packets during
the routing process has become a key concern.

 * Liang Liu
 liangliu@nuaa.edu.cn

 Wenjie Zhao
 wenjiezhao@nuaa.edu.cn

 Yu Wang
 wangyu1503@126.com

 Wenbin Zhai
 wenbinzhai@nuaa.edu.cn

 Yulei Liu
 liu_yulei@nuaa.edu.cn

1 College of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics, 29 Jiangjun RD,
Nanjing 211106, Jiangsu, China

2 The Fifth Electronics Research Institute of the Ministry
of Industry and Information Technology, 78 West Zhucun
RD, Guangzhou 511370, Guangdong, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-023-01477-x&domain=pdf

1287Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

Motivation In this paper, we focus on internal attacks in IoT
networks. The existing literature on routing security mainly
focuses on detecting and defending against traditional cyber
attacks, e.g., black hole attacks, gray hole attacks, worm-
hole attacks, and Sybil attacks [8–10]. However, time-delay
attacks in IoT networks are less noticed. In fact, time-delay
attacks can cause significant harm in many scenarios, such
as industrial process monitoring and control, prognostics
health management, fire or intrusion detection systems, and
traffic accident prediction [11–13]. These scenarios heavily
rely on the timely transmission of packets and are vulnerable
to time-delay attacks.

Taking Fig. 1 as an example, it illustrates the differences
in the forwarding behavior of benign and malicious nodes.
Node N1 delivers packet Pn to node NSink , which passes
through N2,N3,N4,… ,Nt . We assume that there is a mali-
cious node N3 in the path that performs the time-delay attack.
After receiving the packet Pn forwarded by N2 , N3 mali-
ciously introduces a delay before forwarding Pn to the next
node N4 . This malicious behavior eventually causes NSink
to receive the outdated packet Pn , which brings significant
damage to the real-time scenarios in IoT networks. During
the transmission of packets, it is difficult to determine the
presence of malicious nodes because of the multiple nodes
involved in forwarding and the possibility of inherent com-
munication delays. What is worse, if a relay node close to the
Sink is malicious, it can affect the normal arrival of massive
packets from multiple upstream nodes.

Meanwhile, Time-delay attacks are challenging to detect.
Most other attacks in the IoT environment violate the com-
munication protocol to some extent or tamper with the origi-
nal content of the packets [8]. However, a malicious node
performing time-delay attacks only delays the forwarding of
packets. It does not require any decryption or tampering of
the packet content, nor does it violate the established proto-
cols of the network. Thus, it cannot be detected using tradi-
tional cryptographic schemes [14]. Moreover, the attacker

does not need much prior knowledge of the system. The
attack can be easily implemented at the network layer with
low costs.

To address the above issues, the naive idea is to col-
lect the processing time of packets for each node and the
system features that affect the processing time of packets,
such as buffer queue length at the time of sending, collision
count, NOACK(no ACK is received) count, Received Signal
Strength Indicator (RSSI), and Link Quality Indicator (LQI).
Then, time-delay attacks can be detected by modeling the
relationship between system features and processing time.
However, it is difficult to formalize the relationship using a
general mathematical formula since various system features
can affect the packet’s processing time. Machine learning
methods can help to solve this problem by autonomously
modeling the relationship between multiple variables [15].
Therefore, we first propose a baseline algorithm that uses
a machine learning model to predict the processing time of
packets. By detecting each node using the baseline algo-
rithm, it is possible to determine whether the time-delay
attack exists in the IoT network.

However, there are still two shortcomings with the base-
line algorithm.

1. Since the above detection process collects data from all
nodes, which can result in a large amount of energy con-
sumption. In fact, not all data are useful for detection,
and it is not efficient to collect the data from all nodes
without selectivity.

2. Time-delay attacks are flexible and changeable with dif-
ferent attack patterns. The machine learning models with
the best detection performance under different attack
patterns are often different, it is not robust enough to
use a single model.

Contributions To alleviate the two shortcomings men-
tioned above, we propose a Detection algorithm based on
Node pruning and Model fusion (DNM). Firstly, DNM

Fig. 1 Differences in behavior
between benign and malicious
nodes when forwarding packets

1288 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

significantly reduces energy consumption by the node prun-
ing mechanism. The Sink first groups the received packets
according to their routing paths, and an outlier detection
algorithm is used to obtain the reputation value of each
path group. Then, combined with the diversity of paths, the
global reputation value of each node can be further calcu-
lated, based on which the suspected nodes can be filtered
out. The Sink only needs to collect the data recorded by the
suspected nodes, thereby reducing the number of transmitted
packets and achieving energy savings. Secondly, the model
fusion mechanism in DNM can achieve the best detection
performance. The Sink fuses several models that perform
better in the historical data into a new fusion model. The
fusion model is then used for malicious node detection. The
model fusion mechanism can dynamically select better mod-
els for detection in the case of increasing data volume of
historical data, thus showing the best detection performance.
It is worth noting that the training and detection of the model
are performed on the Sink (the resource-rich node) and do
not impose additional overhead on other nodes.

In summary, the contributions of this paper are as follows:

• A stealthy attack called the time-delay attack is intro-
duced. Meanwhile, a baseline detection algorithm based
on machine learning is proposed.

• We design a Detection algorithm based on Node pruning
and Model fusion (DNM) based on the baseline algo-
rithm. DNM significantly reduces energy consumption
through the node pruning and improves the detection
performance by the model fusion.

• The experimental results show that DNM has a lower
overhead and higher detection performance than the
baseline algorithm.

Organization The rest of the paper is organized as follows.
Section 2 presents malicious node detection in IoT networks
and time-delay attacks detection in other fields. Section 3
models the system, and Section 4 presents the baseline algo-
rithm. Section 5 describes the DNM detection algorithm
proposed in this paper, and Section 6 gives the experimental
results. Finally, the conclusion is conducted in Section 7.

2 Related work

Nowadays, it is still a challenge to detect internal attacks in
IoT networks [16], so we first present related studies on inter-
nal attacks. To the best of our knowledge, there is no research
on time-delay attacks in IoT networks. We then discuss
related research in other networks. In addition, the behavior
of node is usually evaluated to detect malicious nodes in IoT
networks, we finally introduce the trust-based detection.

2.1 Internal attacks in IoT

The IoT network routing faces many security challenges,
such as selective forwarding attacks, flooding attacks,
wormhole attacks, black hole attacks, and Sybil attacks.

Huang et al. [17] developed an artificial immune sys-
tem based on a danger model to detect selective forward-
ing attacks. Their scheme first obtains danger signals
from multiple dimensions and then uses support vector
machines to filter out suspected selective forwarding
attacks from denial-of-service attacks. In [18], Ding et al.
used a reinforcement learning algorithm to model selec-
tive forwarding attacks by malicious nodes. To improve
the robustness of the detection method, they designed a
double-threshold density peak clustering algorithm. Since
malicious nodes cause persistent anomalies, suspicious
nodes that are anomalous can be identified from normal
nodes. Chen et al. [19] identified flooding attacks by
modeling the interaction between the two as a two-person
Bayesian game to model the behavior of attackers and
defenders accurately. Then, the attacker’s rational behav-
ior and the defender’s optimal strategy are revealed by
deriving Bayesian Nash equilibrium points. Inspired by the
obtained Bayesian Nash equilibrium, they proposed a cost-
effective defense decision framework. In order to detect
HELLO flooding attacks, a new robust model for using
optimized deep learning methods was proposed in [20].
Cluster head selection, k-path generation, HELLO flood-
ing attack detection and prevention, and optimal shortest
path selection are the steps used in this model.

Teng et al. [21] proposed a wormhole detection algo-
rithm combined with a node trust optimization model
to detect wormhole attacks. The method first adds the
nodes whose neighbors exceed the threshold to the list
of suspicious nodes, and then the exclusive neighbors
of suspicious nodes communicate with each other. The
paths with hop counts exceeding the wormhole thresh-
old are marked as paths to be tested. In [22], a detection
mechanism based on lightweight Bloom filters and physi-
cally unclonable functions was proposed to detect Sybil
attacks. This approach aims to minimize memory cost
and detection latency without affecting detection accu-
racy. Alghamdi et al. [23] proposed a wormhole detec-
tion method based on joint deep-learning techniques and
dynamic trust factors. Their detection method is based on
two trust attributes. Convolutional neural networks and
long and short term memory deep learning models have
been trained using a federated approach to ensure data
security and privacy at the node level. Kim et al. [24]
proposed a trust path routing scheme based on physical
identification to detect Sybil attacks. This scheme uses
the received signal strength indicator and a centralized
trust scheme to improve Sybil node detection.

1289Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

2.2 Time‑delay attack

The current research on time-delay attacks mainly focuses on
the field of time synchronization, Cyber-Physical Systems
(CPS), and Networked Control Systems (NCS). In [14], for
time-delay attacks on the time synchronization of wireless
sensor networks, Song et al. used the generalized extreme
learning deviation (GESD) algorithm and detection by time
conversion techniques. Moradi et al. [25] proposed a cor-
responding solution to the delay attack on synchronization
messages in the Precision Time Protocol (PTP), a time syn-
chronization protocol. Since PTP is vulnerable to network
attacks against its components and synchronization services,
Moussa et al. [26] proposed a protocol to detect delay attacks
against PTP. The nodes calculate the offset using the infor-
mation in the received Report messages. They argue that the
calculated offset should match a pre-specified threshold, and
results above the threshold indicate that the node may suffer
from delay attacks. In the field of time synchronization, time
synchronization between nodes mainly relies on the trans-
mission of specific message packets between a host and its
neighboring slaves by some protocol. It does not involve the
multi-hop transmission of packets in the IoT environment.

Both studies [27, 28] demonstrated that time-delay
attacks can seriously impact cyber-physical systems like
power grids. And both studies [29, 30] proposed corre-
sponding detection methods for time-delay attacks under
cyber-physical and networked control systems. Ganesh
et al. [31] proposed a deep learning-based approach to detect
time-delay attacks. They designed a hierarchical Long and
Short-Term Memory (LSTM) model to process the raw data
stream from the associated CPS sensors and continuously
monitored the embedded signals in the data to detect the
attacks. In Cyber-Physical Systems and Networked Control
Systems, mostly message packets are transmitted from the
controller to the actuator or from the sensors to the control-
ler, without involving multi-hop transmission of packets as
in IoT. Moreover, most studies assumed that the delay time
is fixed or linearly varying [25, 28, 32, 33]. These papers
do not consider that a powerful attacker can disguise the
attack as a normal communication delay by setting a random
delay time. In summary, due to the multi-hop nature of IoT
networks, the above research methods for time-delay attacks
in other fields cannot be applied to IoT.

2.3 Detection based on trust value mechanism

The node pruning in DNM is based on the trust value
mechanism, and many literatures have demonstrated its
effectiveness in IoT malicious node detection. To identify
malicious nodes that cause attacks in smart city applications
and networks, Altaf et al. [34] proposed a trust evaluation

system model for detecting On-Off attacks. The total trust
value of nodes is obtained by collecting direct observations
of communicating nodes and suggestions from neighboring
nodes. In addition, the contextual similarity metric is calcu-
lated to filter out those nodes that constitute Sybil attacks. A
multi-level trust intelligence scheme based on cryptographic
authentication was proposed in [35]. In this scheme, each
node in the network uses RREQ packets to obtain the trust
value of each node by evaluating the behavior of neighbor-
ing nodes. The control packets are then used to discover and
eliminate malicious gray hole nodes. In [10], the authors
used random forest and subjective logic theory to construct
a trust model in IoT networks. The model is used to address
Sinkhole attacks based on low-power and lossy networks.
They proposed RPL routing protocol, RFTrust, is invoked
to circumvent malicious nodes only when the trust level of
neighboring nodes becomes low, thus reducing the extra
overhead and energy consumption.

In [36], Liu et al. used perceptron algorithm and K-means
method to calculate the trust value of nodes in the net-
work for identifying three typical attacks in IoT: tamper-
ing attacks, drop attacks, and replay attacks. The method
first classifies nodes into benign, unknown, and malicious
groups based on trust values. For the unknown group, fur-
ther detection is performed by optimizing the path. This
idea is similar to the DNM detection algorithm proposed
in this paper. After first selecting the suspected nodes by
node pruning mechanism at a small cost, further detection
of the suspected nodes is carried out. To identify conditional
packets manipulation attack in IoT networks [37], the mali-
cious node detection framework CPMAED was proposed.
This framework uses regression and clustering algorithms
to evaluate the trust value of each relay node and classify
them as benign and malicious. For multiple-mix-attack in
IoT networks, Ma et al. [38] proposed a method called dis-
tributed consensus-based trust model (DCONST) to iden-
tify multiple-mix-attack. The method allows assessing the
trustworthiness of IoT nodes by sharing specific information
called cognition. The node trustworthiness values are clus-
tered by the K-Means clustering method to detect malicious
nodes and analyze their specific attack behavior. In large-
scale clustered wireless sensor networks, Singh et al. [39]
proposed a lightweight trust mechanism to protect such sys-
tems from various malicious attacks. A dynamic trust update
algorithm based on parameter trust priority is also proposed
to reward or penalize the trust value of nodes.

3 System model

In this section, we formalize the network model, and model
the time-delay attack. In addition, Table 1 shows a list of
notations for reference.

1290 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

3.1 Network Model

A typical IoT network consists of many nodes (e.g., sensors).
The nodes exchange information with each other through wire-
less communication. Due to the limited communication range
of a single node, packet transmission between different nodes
usually relies on neighboring nodes for forwarding.

We denote Nset as the set of nodes. Nset consists of Sink
nodes that collect sensor data and sensor nodes with different
functions, which can be represented as:

The set of Sink nodes NSink consists of m resource-rich
devices, which can be represented as:

Without loss of generality, in this paper, we only study the
case where there is one Sink node in the network, which is
similar to other works [10, 35–39]. It is worth noting that our

(1)Nset = {NSink,Nsensor}

(2)NSink = {NSink1
,NSink2

,… ,NSinkm
}

research approach can be extended to IoT networks with mul-
tiple Sink nodes.

The set of sensor nodes Nsensor consists of n resource-
constrained devices, which can be represented as:

where Ni represents a node in Nsensor . Each node in the set
Nsensor initially has equal energy and other resources, but the
detection tasks may be different. Sensor nodes periodically
send packets to the Sink node for data collection.

The packets with Ni as the source node and NSink as the
destination node can be represented as:

where Pktj represents a packet in PktNi
 sent from Ni.

The packet Pktj has multiple paths from the source node
Ni to the destination node NSink , which can be expressed as:

where Pathq
Ni

 is denoted as the q-th path from Ni to NSink ,
which can be expressed as:

where Nj and Nk represent the nodes in Nsensor . Taking Fig. 2 as
an example, from the node N2 to the node NSink , there are two
paths: Path1

N2

=< N2,N6,NSink > and Path2
N2

=< N2,N3,N5,

N
Sink

>
 . Path1

N2

 means the packets from N2 follow the path: N2
→ N6 → NSink , and Path2

N2

 means N2 transmits the packets along
the path: N2 → N3 → N5 → NSink.

Meanwhile, Pathq
Ni
[k] denotes the k-th node in Pathq

Ni
 .

For example, Path1
N2

[1] = N2.

3.2 Attack model

In our attack model, the attacker is assumed to have the
following characteristics:

• The attacker is powerful enough to capture and manipu-
late one or more legitimate nodes remotely [10, 35–39].

(3)Nsensor = {N1,N2,… ,Ni,… ,Nn}

(4)PktNi
= {Pkt1,Pkt2,… ,Pktj,… ,Pktn}

(5)PathNi
= {Path1

Ni
,Path2

Ni
,… ,Path

q

Ni
,… ,Pathm

Ni
}

(6)Path
q

Ni
=< Ni,… ,Nj,… ,Nk,… ,NSink >

Table 1 Notations

Symbol Meaning

Nset The set of nodes
NSink Sink nodes in Nset

Nsensor Sensor nodes in Nset

Ni A node of Nsensor

PktNi
Packets sent from Ni

Pktj A packet in PktNi

PathNi
The set of paths through which Ni sends packets

Path
q

Ni

The q-th path in PathNi

Path
q

Ni
[k] The k-th node in Pathq

Ni

Nma The set of hijacked malicious nodes in Nsensor

Nm
ma

The m-th malicious node in Nma

�m
k

The probability that Nm
ma

 performs time-delay attack
�m
k

Delay time for Nm
ma

 to perform time-delay attack
�k The normal communication delay
� Maximal delay time for malicious delay
Tave
delay

The average delay time
Rtab
send

Sending packet information record table
Pid The unique identification number of a packet
Tsend Time of successful transmission of a packet
Nnext The target next hop of a packet in a network route
Nprevious The previous hop of a packet in a network route
Rtab
forward

Forwarding packet information record table
Treceive Time of successfully receive a packet
Vn A characteristic value
Rtab
receive

Receiving packet information record table
Sid The unique identification number of the source node

T
nodei
Sink

The total duration of a packet
Fig. 2 A typical IoT network structure

1291Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

An attacker can use captured nodes to launch time-
delay attacks.

• Malicious nodes only delay packet forwarding within
a certain time range. If the delay time is too long, the
time-delay attack is equivalent to the drop attack, which
can be easily detected by the existing drop attack [40].

• The attacker’s goal is to affect the entire system through
a few malicious nodes in a highly stealthy manner. The
attacker does not interfere with normal network opera-
tions, such as changing data records, altering packets,
compromising network devices, and tampering with
key management operations. Intrusion Detection Sys-
tem (IDS) can detect such activities, which exposes the
attacker to the risk of being detected [41].

Next, we provide a formal description of the attack model.
In an IoT network, there is a path Pathq

Ni
 from node Ni to

node NSink , and the number of relay nodes in Pathq
Ni

 is y. We
assume that there are x (1⩽ x ⩽ y) malicious nodes in Pathq

Ni
 ,

denoted as:

where Nm
ma

 is the m-th malicious node in Nma.
Malicious nodes in Nma perform time-delay attacks on

packets PktNi
= {Pkt1,Pkt2,… ,Pktk,… ,Pktn} from source

node Ni to destination node NSink . Nma performs the time-
delay attack on the k-th packet Pktk (1⩽ k ⩽ n) with prob-
ability {�m

1
, �m

2
,… , �m

k
,… , �m

n
} (0 < �m

k
 < 1), and �m

k
 con-

forms to a random distribution. The delay time of Nma for
Pktk is {�m

1
, �m

2
,… , �m

k
,… , �m

n
} (0 < �m

k
 < �), where � is the

maximum delay time, and �m
k

 conforms to a random distri-
bution within its allowed range. If the normal communi-
cation delay from Ni to NSink is {�1, �2,… , �k,… , �n} , the
average delay time in the presence of time-delay attacks
is denoted as:

Note that even in the absence of an attacker, packets may
be delayed to reach the destination node due to normal com-
munication delays. The attacker delays the packets with a
certain probability � and random delay duration � to disguise
the attack as normal communication delays, which is more
stealthy and hard to be detected.

4 Baseline detection algorithm
for time‑delay attacks

In this section, we first introduce the basic framework of
the baseline algorithm. Then the primary process of the
baseline algorithm is described, including: (1) the collec-
tion and processing of packet delivery and node context

(7)Nma = {N1

ma
,N2

ma
,… ,Nm

ma
,… ,Nx

ma
}

(8)Tave
delay

=
1

n

∑n

i=1
(
∑x

m=1
(�m

i
× �m

i
) + �i)

information. (2) forwarding delay model training and mali-
cious node detection.

4.1 The framework of baseline algorithm

In an IoT network, sensor nodes periodically report the latest
sensor data to the Sink. Due to the limited communication
range of sensor nodes, the packets require multiple relay
nodes for forwarding. In order to detect time-delay attacks,
the relay nodes’ forwarding behavior needs to be monitored.
As shown in Fig. 3, the baseline algorithm consists of two
main stages:

4.1.1 The collection and processing of packet delivery
and node context information (see Section 4.2
for details)

To monitor the forwarding behavior of nodes, each node
records packet delivery and node context information when
processing packets. Specifically, packet delivery information
is the time when nodes send, forward, or receive packets.
Node context information is the context when nodes forward
packets, such as RSSI, LQI, and the number of packets in
the buffer queue. Each node records the above information
locally and sends them to the Sink periodically. After the
information arrives at the Sink, the Sink fuses the packet
delivery information into the forwarding delay. And then,
node context information and forwarding delay are com-
bined as the training set for model training.

As shown in Fig. 3, it assumes that node N1 sends the
packet Pkti to the Sink NSink through node N3 , where the time
when N1 sends Pkti (t1), the time when N3 receives and sends
Pkti (t2 and t3), and the time when NSink receives Pkti (t4)
are the packet delivery information. After the Sink receives
these information, it can calculate the forwarding delay of N3
forwarding Pkti , which equals t4 − t1 . Additionally, the infor-
mation such as RSSI, LQI, and the number of packets in the
buffer when N3 forwards Pkti is the node context information.

4.1.2 Forwarding delay model training and malicious node
detection (see Section 4.3 for details)

We assume that the IoT network does not suffer from mali-
cious attacks in some stages [42], e.g., the initialization stage
of devices. Therefore, we collect and process the informa-
tion from these stages into training sets for training the for-
warding delay models. Then, the Sink collects and processes
such information from other stages into detection sets for
malicious node detection using the trained models. We build
different models for different relay paths of each relay node.
As shown in Fig. 3, there are two relay paths for relay node
N3 : N1 → N3 → NSink and N2 → N3 → NSink . Each relay path

1292 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

corresponds to a forwarding delay model. Finally, multiple
forwarding delay models of the relay node vote on whether
the node is malicious or not.

4.2 The collection and processing of packet delivery
and node context information

The packet routing process involves multiple nodes, and
there may be several malicious nodes among these nodes.
To accurately find all malicious nodes, the behavior of each
relay node needs to be detected. Therefore, we collect and
process the information when the packets pass through each
relay node. As shown in Fig. 4, the collection and processing
of packet delivery and node context information consist of
four main stages:

1. Collecting packet delivery and node context information.
2. Getting the routing path of each packet.

3. Extracting the samples based on routing paths.
4. Aggregating the samples of relay nodes as datasets.

4.2.1 Collecting packet delivery and node context information

To monitor packet forwarding among the nodes, each node
maintains the following three tables when sending, for-
warding, and receiving packets:

• Sending Packet Table (Rtab
send

): Each node in Nsensor stores
Rtab
send

 , which contains three fields: < Pid, Tsend,Nnext > ,
where Pid represents the unique sequence number of
packets transmitted in the network, Tsend records the
time of sending packets, and Nnext represents the next-
hop node of packets. Whenever a node sends a packet,
a record is added to the local Rtab

send
.

• Forwarding Packet Table (Rtab
forward

): All non-leaf nodes
in Nsensor store Rtab

forward
 , which contains the following

fields: < Pid , Treceive , Tsend , Nnext , V1 , V2 , … , Vn >. The

Fig. 3 The flow of baseline
algorithm

Fig. 4 Packet delivery and node context information collection and processing

1293Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

meanings of Pid , Tsend , and Nnext are the same as
described in Rtab

send
 . Additionally, Treceive records the time

of receiving packets, and V1,V2,… ,Vn represents the
context at the time of the packet forwarding, such as
RSSI, LQI, the number of packets in the Nsensor ’s buffer
queue, the times of packet collision, the times of
NOACK during packet sending, and the total time of
NOACK during packet sending. Every time a node for-
wards a packet to its next-hop node, the above informa-
tion is added to the local Rtab

forward
.

• Receiving Packet Table (Rtab
receive

): Every time the Sink
successfully receives a packet, it stores three fields:
< Pid, Sid, Treceive > , where Sid represents the identifica-
tion of the source node obtained from the protocol
stack. The meanings of Pid and Treceive are the same as
described in Rtab

forward
.

Due to the limited storage resources of sensor nodes,
the records in the above tables are overwritten on a first-
in-first-out basis. Meanwhile, Rtab

send
 and Rtab

forward
 stored by

each node are sent to the Sink at a regular interval.

4.2.2 Getting the routing path of each packet

After the Sink receives Rtab
send

 , Rtab
forward

 , and Rtab
receive

 , we can
get the routing path of each packet by looking up the above
tables. Specifically, for a packet Pkti sending from the
source node Ns to the Sink: we first take out a record
< Pid, Tsend,Nnext > from Ns ’s Rtab

send
 , and according to Nnext

of this record, we can find the next-hop node of the route,
denoted as Nn . In Nn ’s Rtab

forward
 , we find the record where

Pid = Pkti ’s Pid , and take out Nnext in that record to get the
next-hop node of the route. Repeat this process until the
next-hop node is the Sink, and finally, we can get a com-
plete routing path of Pkti.

For example, as shown in Fig. 3, the packet Pkti is sent
from N1 to NSink through N3 . After the Sink collects the tables
of all nodes, there exists a record < Pid, Tsend,N3 > in N1 ’s
Rtab
send

 , and we can know the next-hop node of the route is N3 .
Then we find out the record < Pid , Treceive , Tsend , NSink , V1 , V2 ,
… , Vn > from N3 ’s Rtab

forward
 , and we can know the next-hop

node of the route is NSink . Finally, the routing path of Pkti can
be obtained as: N1 → N3 → NSink.

4.2.3 Extracting the samples based on routing paths

The training samples of forwarding delay models comprise
node context information (as features) and forwarding delay
(as a label). The node context information is recorded by the
relay nodes themselves, while the forwarding delay is
derived by fusing packet delivery information. How to select

the appropriate packet delivery information for fusion to
derive the forwarding delay is an important issue. The mali-
cious nodes may tamper with the receiving or sending time
of the packets (Treceive and Tsend in Rtab

forward
) recorded by them-

selves. It means the packet delivery information recorded by
the relay nodes themselves cannot be trusted. Therefore, we
use the packet delivery information recorded by two neigh-
boring nodes of the relay node to derive the relay node’s
forwarding delay.

As shown in Fig. 5, packet Pkti is sent from N1 to NSink
through Nj , Ni , and Nk . When Nj forwards Pkti , a record <
Pid , Tj

receive
 , Tj

send
 , Ni , V

j

1
 , Vj

2
 , … , Vj

n > is added to Nj ’s
Rtab
forward

 . When Nk forwards Pkti , a record < Pid , Tk
receive

 ,
Tk
send

 , Nl , Vk
1
 , Vk

2
 , … , Vk

n
 > is added to Nk ’s Rtab

forward
 . The

forwarding delay TNj

Nk
 of Ni forwarding Pkti is calculated

from Tj

send
 and Tk

receive
:

There are multiple relay nodes on the packet’s routing
path, and we extract samples for each relay node separately.
For example, as shown in Stage 3 of Fig. 4, there are two
relay nodes in Pkt1 ’s routing path: N2 and N3 . For a relay
path < N1,N2,N3 > , we can extract N2 ’s node context infor-
mation as a sample. For another relay path < N2,N3,NSink > ,
we can extract N3 ’s node context information as a sample.
These two samples are used to train the forwarding delay
models for N2 and N3 , respectively.

4.2.4 Aggregating the samples of relay nodes as datasets

Since time synchronization protocols are vulnerable to time-
delay attacks [14, 43], this paper considers the more general
case that the nodes are not synchronized in time. Therefore,
we build different forwarding delay models for relay paths
and detect them separately. To match each forwarding delay
model with its training data, we aggregate the samples with
the same relay path into a dataset for model training. For
example, as shown in Stage 4 of Fig. 4: for the relay node N2 ,
we aggregate the samples of two relay path (< N1,N2,N3 >
and < N1,N2,N4 >) into two datasets, which are used for the
training of two different forwarding delay models.

(9)T
Nj

Nk
= Tk

receive
− T

j

send

Fig. 5 The way to obtain the forwarding delay of the relay node

1294 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

4.3 Forwarding delay model training and malicious
node detection

After obtaining the datasets of relay paths, we use them to
train forwarding delay models. The forwarding delay model
is trained using classical machine learning algorithms such
as Support Vector Regression (SVR) and Decision Tree
(DT). Then, multiple forwarding delay models of the relay
node vote to decide whether the node is malicious or not. As
shown in Fig. 6, the training and detection of the forwarding
delay model can be divided into three main stages:

4.3.1 Training process

A relay node has multiple relay paths, and we build the
forwarding delay model for each relay path. We randomly
divide the dataset of relay paths into a training set and a test
set. The training set is used to train the forwarding delay
model, and the trained model is tested by the test set. Finally,
the loss of the model can be obtained, which is denoted
as losstraining . As shown in Stage 1 of Fig. 6, for the relay
node Ni , the forwarding delay models are trained sepa-
rately for Ni ’s relay paths: < Nj,Ni,Nk > , < Nj,Ni,Nl > and
< Nj,Ni,Nm > , and the loss of each model is obtained.

4.3.2 Detection process

Similar to the training process, the Sink collects packet
delivery and node context information from the IoT network,

which is processed to obtain multiple detection datasets.
Each detection dataset is handed over to its corresponding
forwarding delay model for prediction. Moreover, the loss
can be calculated based on the predicted and actual values,
denoted as lossdetection.

4.3.3 Voting for malicious nodes

For each forwarding delay model of Ni , losstraining and
lossdetection obtained in the training and detection process are
compared, and their difference is used to vote whether Ni is
malicious. The final decision that whether Ni is malicious or
not depends on the voting result of Ni ’s multiple forwarding
delay models.

5 Detection algorithm based on Node pruning
and Model fusion for time‑delay attacks

The baseline algorithm collects packet delivery and node
context information from all nodes to detect malicious nodes,
which causes unnecessary energy consumption. In fact,
not all nodes’ information is required to be collected and
detected. Meanwhile, the time-delay attack has various attack
patterns. The single machine learning model used in the base-
line algorithm cannot cope well with the different attack pat-
terns, resulting in poor detection performance. To reduce the
energy consumption and improve the detection performance
of the baseline algorithm, we designed an efficient Detection

Fig. 6 Forwarding delay model
training and detection process

1295Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

algorithm based on Node pruning and Model fusion (DNM).
In this section, we first describe the overall architecture of
DNM, and then give a detailed description.

5.1 The overall architecture of DNM

The overall architecture of DNM is shown in Fig. 7, which
consists of two main parts: node pruning and model fusion.

5.1.1 Node pruning

The baseline algorithm collects information from all nodes
without selectivity, resulting in unnecessary energy con-
sumption. In DNM, we do not directly collect the informa-
tion of all nodes, but first filter out some suspected nodes
through node pruning instead. Node pruning only uses the
routing information of packets to filter out suspected nodes
with a small overhead. First, the Sink groups the received
packets by their routing paths, and the packets with the same
routing path are grouped into the same path group. Then, for
each path group, an outlier detection algorithm is performed
on the transmission time of each packet. The outlier fre-
quency is used as the basis for assigning a reputation value
to each relay node in the path group. Finally, by combining
each relay node’s reputation value in different path groups,
a global reputation value of the relay node can be obtained.
The nodes with low global reputation values are considered
as suspected nodes.

5.1.2 Model fusion

An attacker may execute the time-delay attack with different
attack probabilities and strengths. A single machine learning
model used in the baseline algorithm cannot handle com-
plex attack scenarios well, resulting in non-robust results.
In DNM, we improve the detection performance by model
fusion. We pick several machine learning models that per-
form well in test sets and combine them into a fusion model.
For the suspected nodes filtered by node pruning, the Sink

selectively collects packet delivery and node context infor-
mation from the suspected nodes and processes them into
datasets. The datasets are then fed into the fusion model to
determine whether the suspected nodes are malicious.

5.2 Node pruning

The process of node pruning is shown in Fig. 8, which con-
sists of the following four main stages:

1. Getting the routing path of all packets through light-
weight packet path tracing algorithm.

2. Grouping the packets according to their routing paths.
3. Assigning reputation values to routing paths based on

the outlier detection results.
4. Aggregating reputation values of the relay nodes.

5.2.1 Getting the routing path of all packets
through lightweight packet path tracing algorithm

The baseline algorithm uses Nnext in Rtab
forward

 to implement
packet path tracking (see Section 4.2.2 for details), which
relies on collecting node context information from all
nodes and has a significant overhead. To enable packet path
tracking at a minor cost, we introduced Provenance-enabled
Packed Path Tracing (PPPT) approach [44] in DNM. PPPT
is a lightweight packet path tracing scheme. Packet path
tracking is achieved by querying the relevant information
stored in each node. Its average power consumption and
memory overhead are almost negligible [44].

PPPT can obtain the complete path of packets in the net-
work by combining node-level provenance and system-level
provenance. The node-level provenance is introduced by
embedding a previous-hop node’s identification and a unique
sequence number of packets in the corresponding relay node.
In DNM, we reuse the previous-hop node’s identification
and the unique sequence number of packets in Rtab

forward
 ,

denoted as Nprevious and Pid . Then Rtab
forward

 has the following
fields: < Pid , Treceive , Tsend , Nprevious , Nnext , V1 , V2 , … , Vn >. In

Fig. 7 DNM algorithm flow

1296 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

addition to the node-level provenance, a system-level prov-
enance is included to capture the complete packet trace by
including destination and source node identification pairs.

5.2.2 Grouping the packets according to their routing paths

After getting the routing path of each packet, we group the
packets according to their routing paths. As shown in
Stage 2 of Fig. 8, there are two paths from N2 to NSink : N2
→ N3 → NSink (Path1N2

) and N2 → N4 → NSink (Path2N2

). There-
fore, the packets sent from N2 to NSink are divided into two
different groups.

5.2.3 Assigning reputation values to routing paths based
on the outlier detection results

For the transmission time of packets on the same rout-
ing path, the frequency of outliers remains stable even in
the presence of normal communication delays. However,
malicious nodes in the path may delay the packet forward-
ing, which can result in more packet transmission time

outliers in the path. If the outlier frequency of the packet
transmission time is somewhat higher than the historical
outlier frequency, the path is considered as a suspected
path. Based on the outlier detection results, a global repu-
tation value is assigned to relay nodes in the routing path.

Different from the baseline algorithm, Rtab
send

 is no longer
used in DNM to record the information of packet sending
time Tsend , instead Tsend is carried in the packet sent by
each node. The Sink still uses Rtab

receive
 to record the receiv-

ing packet information and Treceive in Rtab
receive

 to record the
packet receiving time. For a packet Pkt sent to the Sink
from Ni , the packet transmission time TNi

Sink
 can be obtained

from TSink
receive

 (the time when the Sink receives Pkt) and Ti
send

(the time when Ni sends Pkt):

We use outlier detection based on Median Absolute
Deviation (MAD) [45, 46] to detect outliers in the packet
transmission time. It is a robust method to detect outliers,
which amplifies the effect of outliers and allows for more
accurate detection of outliers from normal data.

(10)T
Ni

Sink
= TSink

receive
− T

Ni

send

Fig. 8 Node pruning

1297Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

Suppose Ni sends m packets to the Sink through path Pathj
Ni

 .
The packet transmission time of these packets is X = {T

N
i

Sink1
,

T
N
i

Sink2
,… , T

N
i

Sinkm
} . The MAD is calculated as follows:

where median(X) is the median of X, abs(X − median(X))
is the absolute deviation of the data points in X from the
median of X.

The distance of sequence X from the median(X) based on
MAD is sequence D = {D1,D2,… ,Di,… ,Dm}:

which is the absolute deviation of the data points from the
median divided by the median of the absolute deviation
value sequence.

D and MAD are used to determine if the data points in X
are outliers.

If Di > n ×MAD , the data point is considered as an outlier
and vice versa. n is a settable parameter.

For the path Pathj
Ni

 , the frequency of outlier is denoted as:

where count() is the counting function, count(Di > n ×MAD)
returns the number of outliers in D, and count(D) is the total
number of data points in D. The pseudo code for outlier
frequency calculation is shown in Algorithm 5.2.3.

(11)MAD = median(abs(X − median(X)))

(12)D = abs(X − median(X))∕MAD

(13)
{

The Di is outlier, if Di > n ×MAD

The Di is normal, if Di ≤ n ×MAD

(14)Rate
j

Ni
=

count(Di > n ×MAD)

count(D)

For the path Pathj
Ni

 , we determine whether it is suspected
based on Ratej

Ni
 in the historical dataset and the latest data-

set. We record Ratej
Ni

 calculated from the historical dataset
as Ratej

Ni

his
 . When a new detection process is performed, we

fuse the new dataset with the historical dataset, and Ratej
Ni

is calculated as Ratej

Ni

new
.

If Ratej
Ni

new
> Rate

j

Ni

his
 × � , Pathj

Ni
 is considered to be sus-

pected; otherwise, Pathj
Ni

 is considered to be benign. � represents
the maximum acceptable proportion of outlier frequency.

Due to the diversity of IoT networks routing, there are
multiple routing paths between source and destination nodes,
and a node may act as a relay node in multiple routing paths.
If malicious nodes exist in the network, the paths containing
these nodes are likely to be attacked. This means that the mali-
cious behavior of the malicious node (forwarding packets with
delay) is reflected in multiple paths. We can determine whether
a node is suspected by combining the forwarding behavior of
the node in multiple paths. Moreover, we use reputation values
to represent the forwarding behavior of nodes. After packets
are grouped according to paths, outlier detection is performed
on each path group. If a path is considered benign after outlier
detection, it is assigned a positive reputation value; otherwise,
it is assigned a negative reputation value. A lower reputation
value helps us find suspected paths, and combining multiple
suspected paths helps us identify suspected nodes.

The reputation value of routing path Pathj
Ni

 is the number
of packets passing through Pathj

Ni
 , which is:

where Pktset is the set of packets sent by Ni through Pathj
Ni

 ,
and count(Pktset) is the total number of packets in Pktset.

The reputation value of relay nodes in each relay path is
the same as that of the path. For example, as shown in Stage
3 of Fig. 8, Path1

N1

 ’s reputation value is RepuPath1
N1

 . The repu-
tation values of the relay node N2 (Path1

N1

[2]) and N3
(Path1

N1

[3]) in Path1
N1

 are equal to RepuPath1
N1

.

5.2.4 Aggregating the reputation values of the relay nodes

We can determine whether a relay node is suspected based on
its global reputation value. The global reputation value of node
Ni is denoted as ReputationNi

 , and ReputationNi
 is the sum of

(15)

⎧
⎪⎨⎪⎩

Path
j

Ni
is suspected, if Rate

j

Ni

new
> Rate

j

Ni

his
× 𝛼

Path
j

Ni
is benign, if Rate

j

Ni

new
≤ Rate

j

Ni

his
× 𝛼

(16)

⎧⎪⎨⎪⎩

Repu
Path

j

Ni

= count(Pktset), if Path
j

Ni
is benign

Repu
Path

j

Ni

= −count(Pktset), if Path
j

Ni
is suspected

Algorithm 1 Outlier frequency calculation

1298 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

the reputation values of each routing path that contains Ni as
a relay node. For example, as shown in Stage 4 of Fig. 8. Node
N2 acts as a relay node in Path1

N1

 , Path2
N1

 , Path3
N1

 , and Path1
N3

 .
Then the global reputation value of N2 (ReputationN2

) is the
sum of the four paths’ reputation values: ReputationN2

=

RepuPath1
N1

+ RepuPath2
N1

+ RepuPath3
N1

+ RepuPath1
N3

If ReputationNi
 > 0, Ni is considered as a benign node.

5.3 Model fusion

After filtering out the suspected nodes, it is necessary to detect
whether the suspected nodes are malicious. Therefore, their
packet delivery and node context information need to be col-
lected. The Sink processes the information into datasets and
then hands them over to the machine learning models for
detection. To improve the performance of the detection algo-
rithm, DNM does not use a single machine learning model for
detection as in the baseline algorithm. Instead, several machine
learning models that performed well in historical datasets are
fused for detection.

5.3.1 Collecting packet delivery and node context information

Unlike the baseline algorithm, the nodes do not need to
actively send all the information recorded locally to the Sink,
which causes significant energy consumption. In DNM, only
when the Sink collects the information in the nodes’ Rtab

forward
 ,

the nodes send a part of the information recorded locally to
the Sink. For example, for the suspected node Ni , Ni sends
Pid and V1,V2,… ,Vn (node context information) to the Sink.
For the auxiliary node Ni−1 of Ni , the records with Nnext equal
to Ni are filtered. Pid and Tsend of these records are sent to the
Sink. For the auxiliary node Ni+1 of Ni , the records with
Nprevious equal to Ni are filtered. Pid and Treceive of these
records are sent to the Sink. The Sink takes V1,V2, ...,Vn as
the features of the model, and TNi−1

Ni+1
 calculated by Treceive and

Tsend as the label of the model. All the obtained records are
used to determine whether Ni is malicious or not.

5.3.2 Forwarding delay fusion model training
and malicious node detection

Classical machine learning models include SVR, DT, Linear,
Random Forest, and others. They have the advantage of low
complexity and do not require a large amount of data for
training. In DNM, we use multiple simple machine learning
models for training and testing, and select a few that perform
well for detection. We achieve higher accuracy by fusing

(17)
{

The Ni is normal, if ReputationNi
> 0

The Ni is suspected, if ReputationNi
≤ 0

several simple models. The pseudo code of model fusion is
shown in Algorithm 2.

As shown in Fig. 9, the model fusion is divided into four stages:

1. Training process: Similar to the baseline algorithm, the
Sink collects packet delivery and node context informa-
tion from some stages that do not suffer from malicious
attacks. For each relay path of a relay node, the above
information is extracted as a historical dataset. Then it
is randomly divided into a training set and a test set in
a specific ratio. Multiple machine learning models are
trained using the training set, and the trained models are
tested by the test set, which ultimately yields the loss
(losstraining) of each model for that relay path.

2. Selecting the better performing models: The models that
perform better in the test set are selected from the sev-
eral machine learning models trained in Stage 1.

3. Detection process: For the suspected nodes to be
detected, the Sink collects packet delivery and node
context information from themselves and their neighbor-
ing nodes. For each relay path of the suspected nodes,
the information is processed into detection sets and then
handed over to the models (picked out in Stage 2) for
prediction. The loss of each model can be obtained from
the predicted and actual values, denote as lossdetectin.

4. Voting for malicious nodes: A single model decides
whether to vote the relay path as a malicious relay path
based on the difference between losstraining and lossdetectin .
Finally, the proportion of malicious relay paths to all
relay paths in the suspected node is used to decide
whether the node is malicious or not.

5.4 Complexity analysis

5.4.1 The time complexity of DNM

In this section, we analyze the time complexity of DNM.
Node pruning and model fusion are discussed separately.

In the node pruning stage, it is assumed that there are
N sensor nodes and one Sink in the IoT network. The Sink
node receives packets from M sensor nodes (0 < M ≤ N).
Assuming that the average number of packets sent by each
sensor node is k (k > 0), the Sink node receives a total of
k × M packets. When the packets’ routing path is grouped,
each packet’s transmission time is calculated, which requires
traversing all packets with the time complexity O(k × M).
There are four steps to calculate the outlier frequency of each
group (see Section 5.2 for details), and each step requires
traversing all packets once. In summary, the time complexity
of node pruning is O(5 × k × M).

In the model fusion stage, it is assumed that there are t
sub-models. The training time complexity of each sub-model
is Ti (0 < i ≤ t), and the prediction time complexity is Di (0

1299Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

< i ≤ t). For example, the training time complexity of sub-
model linear regression is O(f 2 × n + f 3), and the prediction
time complexity is O(f), where n is the number of training
samples, n = k × M, and f is the number of features. The time
complexity when training the model is O(

∑t

i=1
Ti). From t

sub-models, r (0 < r ≤ t) better-performing models are
selected as the fusion model. The time complexity in detect-
ing is O(

∑r

i=1
Di). Then the model fusion time complexity

is O(
∑t

i=1
Ti +

∑r

i=1
Di). In summary, the time complexity

of DNM is O(5 × k ×M +
∑t

i=1
Ti +

∑r

i=1
Di), and the worst

time complexity is O(5 × k × N +
∑t

i=1
Ti +

∑t

i=1
Di).

5.4.2 Comparison with other algorithms

We compare the time complexity of our proposed algo-
rithm (DNM) with two other algorithms: Moussa et al. [26]
and Ganesh et al. [47]. Moussa et al. calculate the offset
using the information in the Report message received by
the node. The whole process requires traversing through all
the received packets for calculation. Assuming that the total
number of packets is k ×M , the time complexity can be sim-
plified to O(k ×M). Ganesh et al. modeled the collected sen-
sor data and delay values using a two-layer LSTM model. In
a standard LSTM network, the time complexity of the LSTM
is O(nc × nc × 4 + ni × nc × 4 + nc × no + nc × 3) [48], where
nc is the number of memory cells, ni is the number of input
units, and no is the number of output units.

The time complexity of DNM is higher than Moussa
et al. Because we utilize more information to model the rela-
tionship between feature values and delay values through
machine learning models. Therefore, DNM has better
detection performance. The learning time of the two-layer
LSTM model proposed by Ganesh et al. is determined by
nc × (4 × nc + no) . For tasks that require a large number
of output units and memory cells, learning LSTM models
become computationally expensive [48]. In contrast, the
fusion model in DNM is a combination of simpler machine
learning models. Generally, it has a lower time complexity
than the LSTM model with complex structures.

6 Performance evaluation

This section evaluates the baseline algorithm and DNM
in terms of performance and energy consumption, respec-
tively. (1) Performance comparison evaluation: We first
show the performance comparison of a single model and the
fusion model. Owing to the higher detection performance
of the fusion model, we used the fusion model instead of
a single model in our subsequent experiments. We then
explored the effects of attack strength, attack probability,
malicious node percentage, and the count of nodes on dif-
ferent algorithms(Moussa et al. [26], Ganesh et al. [31],
baseline and DNM). (2) Energy consumption evaluation:
Since packet transmission occupies the major overhead of
node energy consumption [49], we use the count of packets
transmitted by the detection algorithms to compare energy
consumption. The energy consumption of the baseline algo-
rithm and DNM are compared before and after the attack
occurs, respectively.

Algorithm 2 Model fusion detection algorithm

1300 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

6.1 Metrics

To comprehensively evaluate the performance of the algo-
rithms, we use accuracy, false alarm rate, recall rate, and
F1-score as metrics. The accuracy rate reflects the propor-
tion of benign and malicious nodes judged by the algorithms
that are actually benign and malicious nodes; the false alarm
rate reflects the proportion of malicious nodes judged by
the algorithms that are actually benign nodes; the recall rate
reflects the proportion of benign nodes judged by the algo-
rithms that are actually benign nodes; the F1-score reflects
the overall performance of the algorithms. Based on Table 2,
we define accuracy Pa = (TP + TN)∕(P + N) , false alarm
rate Fa = FP∕(TP + FP) , recall rate R = TP∕(TP + FN) and
F1-score F1 = 2 × TP∕(2 × TP + FP + FN).

6.2 Environment and parameter settings

As shown in Fig. 10, our experiments are simulated using
the Cooja simulator [50] of the Contiki platform. The
nodes are configured with the RPL protocol at the net-
work layer for routing. The physical, link and application
layers are configured using the standard protocol stack
of the IoT. All IoT nodes are placed in a rectangular area
of 300 × 300 m2 and each node has an effective com-
munication range of 50 m. Although the locations of the

nodes in our network are randomly generated, each node
is guaranteed to have at least one path to the Sink node.

To avoid bias, we simulate ten rounds for each experi-
ment under ten network topologies. The average value is
chosen as the final experimental result. We use Python
and implement all algorithms using the Scikit-learn
library and PyTorch. Table 3 summarizes the main varia-
bles affecting detection performance. In our experiments,
we focus on their changes’ effect on the algorithms’
detection results.

6.3 Comparison of single model and fusion model

To show the performance difference between single model
and fusion model, we conducted experiments on the base-
line. As shown in Table 4, we selected 11 machine learning
models for comparison. We set the upper limits of random
delay time to 0.05s, 0.1s, 0.15s, 0.2s, and 0.25s, respectively,
the count of nodes to 20, the percentage of malicious nodes
to 0.1, and the attack probability to 0.5.

Our results are shown in Fig. 11. It can be seen that
a single model does not always maintain the best per-
formance under different attack strengths. As shown in
Fig. 11, the mlp model has the highest Pa and the lowest
Fa when the upper limit of the random delay time of 0.05
s. However, the lasso model has the highest Pa and the

Fig. 9 Forwarding delay fusion
model training and detection

Table 2 Experimental evaluation Detection result

Malicious Benign Total

Malicious True positive (TP) False negative (FN) P (Real malicious)
Reality Benign False positive (FP) True negative (TN) N (Real benign)

Total P′ (Detect malicious) N′ (Detect begin) P + N

1301Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

lowest Fa when the upper limit of the random delay time
is increased to 0.20 s. The mlp model has the highest R
when the upper limit of the random delay time is 0.05 s,
while the liner and ridge models have the highest R when
the delay time increases to 0.10 s. The mlp model has the
highest F1 when the upper limit of the random delay time
is 0.05s, while the lasso model has the highest F1 when
the delay time is increased to 0.20s. Moreover, Pa , Fa , R
and F1 of the fusion model consistently outperform most
other models, especially when the attack strength is getting
weaker. Because the model fusion method always selects
the best-performing models in the historical data, it can
well combine the excellent performance of each model on
different data.

6.4 Comparison of different algorithms

Due to the lack of research on time-delay attacks in IoT,
we compare baseline and DNM with the current state-of-
the-art algorithms in PTP [26] and CPS [31].

For time-delay attacks in PTP, Moussa et al. [26] intro-
duce a new PTP event message and calculate the offset
using the information in the event message received by
nodes. The calculated offset is expected to adhere to a
pre-specified threshold, and results above the threshold
indicate that nodes may suffer from time-delay attacks.

For time-delay attacks in CPS, Ganesh et al. [31] pro-
pose a deep learning-based approach to detect time-delay
attacks. They design a two-layer LSTM model to process

Table 3 Parameter and description

Parameter Description

Regression model The type of machine learning model used in the baseline algorithm.
The strength of attack The delay time of a packet when a malicious node performs the time-delay attack against a

forwarded packet.
The probability of attack The probability that a malicious node performs the time-delay attack against a forwarded packet.
The percentage of malicious nodes The percentage of malicious nodes in the IoT network among all nodes.
The count of nodes The count of nodes in the IoT network.

Fig. 10 The screenshot of the experiment using Cooja emulator

1302 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

the raw data stream from CPS sensors. The model’s accu-
racy is measured by the difference between the predicted
and actual latency, which is used to determine whether
time-delay attacks exist.

6.4.1 Impact of the strength of attack

In order to evaluate the impact of attack strength on the dif-
ferent algorithms, we set the upper limits of random delay
time to 0.05s, 0.1s, 0.15s, 0.2s, and 0.25s, respectively., the
count of nodes to 20, the percentage of malicious nodes to
0.1, and the attack probability to 0.5.

The experimental results are shown in Fig. 12. As the
attack strength increases, Pa , R, and F1 of Ganesh et al.,
baseline, and DNM steadily increase; Fa steadily decreases.
The reason is that the malicious behavior of nodes is more
obvious relative to normal nodes as the attack strength
increases. Therefore these algorithms can identify mali-
cious nodes more accurately. Pa , R, and F1 of Moussa et al.
are low and do not vary significantly under different attack
strengths, indicating that the algorithm is ineffective in
detecting malicious nodes. In addition, Pa of DNM is always
higher than the baseline algorithm; Fa of DNM is always
lower than the baseline algorithm. The reason is that DNM
only detects the suspected nodes filtered by node pruning.
Some benign nodes that would cause false positives by the
algorithm are not detected. F1 and R of DNM are always
higher than the baseline, which reflects the better detection
performance of DNM than the baseline.

6.4.2 Impact of the probability of attack

To evaluate the impact of attack probability, we set the attack
probability as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively, the
count of nodes as 20, the percentage of malicious nodes as
0.1, and the upper limit of delay time as 0.15s.

As shown in Fig. 13, with the increase of attack prob-
ability, Pa , R, and F1 of Ganesh et al., baseline, and DNM
gradually increases and then remains stable; Fa gradually
decreases and then remains stable. When the attack probabil-
ity is low, the node’s malicious delay behavior is disguised
as a normal communication delay. It can affect the arrival of
packets from other benign nodes upstream of the node. The
difference in behavior between malicious and benign nodes
cannot be clearly distinguished, thus resulting in a higher
false alarm rate. As the probability of attack increases, the
malicious behavior of the nodes becomes more apparent, so
these algorithms are able to identify malicious nodes more
accurately. Moreover, F1 and Pa of DNM are always higher
than the baseline algorithm; Fa of DNM is always lower than
the baseline algorithm. This result reflects that EMFA’s node
pruning helps to identify malicious nodes more accurately.

6.4.3 Impact of the percentage of malicious nodes

In order to evaluate the impact of the percentage of mali-
cious nodes on the different algorithms’ detection perfor-
mance, we set the malicious node percentage to 0.05, 0.1,
0.15, 0.2, and 0.25, respectively, the count of nodes to 20,
the attack probability to 0.5, and the upper limit of delay
time to 0.15s.

As shown in Fig. 14, our results demonstrate that as the
percentage of malicious nodes increases, Pa , R of DNM and
baseline remain basically stable, and Fa gradually decreases.
We can notice that Fa of DNM is smaller than that of the
baseline and other algorithms. The reason is that as the per-
centage of malicious nodes increases, the count of malicious
nodes increases. Malicious nodes’ malicious behavior affects
more routing paths, which gives DNM more available path
information. Combining more routing paths allows DNM
to filter out suspicious nodes more accurately. Malicious
node detection is performed only for these suspicious nodes,
thus reducing Fa . In addition, as the percentage of malicious
nodes increases, the F1 of DNM remains stable and higher
than the baseline, reflecting that DNM can still show high
robustness under different attack modes. The F1 of Ganesh
et al. tends to increase gradually, indicating that the algo-
rithm’s overall performance increases with the number of
malicious nodes.

6.4.4 Impact of the count of nodes

To evaluate the impact of nodes’ count on the detection per-
formance, we set the count of nodes to 10, 15, 20, 25, and
30, respectively. The malicious node percentage is set to
0.1, and the count of malicious nodes is set to 1, 2, 2, 3, and
3, respectively. The attack probability is set to 0.5, and the
upper limit of delay time is set to 0.15s.

Table 4 Model notations

Parameter Description

linear Linear model
svr Support Vector Regression model
mlp Multilayer Perceptron model
dt Decision Tree model
ridge Ridge model
lasso Lasso model
rf Random Forest model
adaboost Adaboost model
gbdt Gradient Boosting Regression Tree model
bagging Bagging model
xgb XGBoost model
fm Fusion model

1303Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

Fig. 11 The comparison of single model and model fusion in baseline algorithm

1304 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

Our results are shown in Fig. 15: Pa , Fa , and F1 of the
baseline algorithm and DNM remain basically stable as the
count of nodes increases, indicating that both the baseline
algorithm and DNM can maintain good detection perfor-
mance in networks of different sizes. As the count of nodes

increases, more packets are transmitted in the network.
Packet collisions, retransmissions, and forwarding after
waiting in the buffer queue occur more frequently during
transmission. These scenarios can lead to longer packet rout-
ing times. Moreover, the larger the network size, the more

Fig. 12 The impact of the
strength of attack

Fig. 13 The impact of the prob-
ability of attack

1305Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

complex this situation becomes, leading to a slight degrada-
tion in the algorithm’s overall performance. Since Ganesh
et al., baseline and DNM both take into account these factors
affecting the routing time and use them as features for the
training of the model. Therefore, they all show better detec-
tion performance than Moussa et al. in different node sizes.

6.4.5 The summary of performance comparison

From the above experiments in different environments, we
can find that the overall detection performance of baseline
and DNM is better than that of Moussa et al. and Ganesh
et al. The specific reasons are as follows:

Moussa et al. [26] assume that the communication path
between the master and the slave node is symmetric. In
other words, the packets sent from the master node to the
slave node pass through the same path as the packets from
the slave node to the master node. However, this assump-
tion does not hold true in multi-hop IoT. Because there may
be multiple paths between two nodes in the multi-hop IoT,
packets are selected for the best route based on the routing
protocol. Therefore, the packet transmission path between
two nodes may change due to network topology and environ-
ment changes. Moreover, since the network structure of PTP
is relatively simple, they only consider the time character-
istics. In contrast, the network structure of multi-hop IoT is
complex, and the forwarding delay of packets is affected by
many factors (e.g., the times of packet collisions, the time

that packets wait in the buffer, etc.). It is difficult to deter-
mine whether a node is under attack by considering only the
time characteristic.

Ganesh et al. [31] utilize a two-layer LSTM model with
a complex network structure to model the relationship
between delay values and various features. Thus, their detec-
tion method performs better than Moussa et al. and is close
to baseline (modeling using machine learning). In CPS, most
packets are transmitted between the fixed controller and the
actuators (sensors). The packet transmission path between
two nodes is fixed, and the packet transmission is continu-
ous. Therefore there may be an implicit delay pattern, which
can be learned using the LSTM model with forgetting, input,
and output gates. While in multi-hop IoT, the path of packet
transmission is variable, and the nodes receive discontinuous
packets from different nodes due to the changing network
environment. This situation is common in multi-hop IoT.
Therefore it is difficult for the LSTM model to learn the
implicit delay patterns in multi-hop IoT.

The detection performance of baseline and DNM is gen-
erally similar. However, DNM filters out suspected nodes
and performs detection only for suspected nodes. Since
DNM uses node pruning to remove nodes that may cause
false positives in advance, DNM has a lower Fa and higher R
than the baseline in different environments. Therefore DNM
has a higher F1 score. In addition, node pruning signifi-
cantly reduces the algorithm’s detection overhead, as dem-
onstrated in the subsequent experiments.

Fig. 14 The impact of the per-
centage of malicious nodes

1306 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

6.5 Comparison of energy consumption
for the baseline algorithm and DNM

We compare the extra energy consumption of the baseline
algorithm and DNM from two perspectives, before and after
the attack occurs.

6.5.1 Comparison of detection packets collected
before the attack

We compared the count of detection packets required to be
transmitted by the baseline algorithm and DNM in the same
time when no attack occurs, which characterizes the energy
consumption of the algorithms under normal conditions. We
set the upper limit of the random delay time to 0.15s, the
count of nodes to 20, the percentage of malicious nodes to
0.1, and the attack probability to 0.5.

Our results are shown in Fig. 16. According to obtained
results, we can find that as the count of nodes in the net-
work increases, the count of detection packets transmitted
by the baseline algorithm and DNM shows an incremental
trend. However, the count of detection packets transmitted
by DNM is much smaller than that of the baseline algorithm.
In the case of 30 nodes, the count of detection packets DNM
needs to transmit is only about 7% of the baseline algorithm.
This reason is that the baseline algorithm detects all non-
leaf nodes, and each node sends all the data recorded by it.
In contrast, DNM detects only the suspected nodes through
node pruning, which significantly reduces the transmission

of packets required for algorithm detection. Moreover, node
pruning is based on PPPT, and the extra overhead brought
by PPPT is negligible compared to the energy consumed by
normal packet transmission [44]. Therefore, DNM achieves
low energy consumption overhead compared to the baseline
algorithm by node pruning.

6.5.2 Comparison of detection packets collected
after the attack

We compared the amount of detection packets required to
be transmitted by the baseline algorithm and DNM after the
attack occurred. We set the upper limit of the random delay

Fig. 15 The impact of the count
of nodes

Fig. 16 The count of nodes detected before the attack

1307Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

time to 0.15s, the count of nodes to 20, the percentage of
malicious nodes to 0.1, and the attack probability to 0.5.

The count of nodes detected by the baseline algorithm
and DNM for different attack strengths is illustrated in
Fig. 17. It can be seen that the count of nodes to be detected
in the baseline algorithm is stable at around 16, which is the
count of non-leaf nodes in the network involved in the packet
forwarding process. The count of nodes to be detected in
DNM is stable at around 4 due to the node pruning mecha-
nism, which dramatically reduces the count of nodes to be
detected compared to the baseline algorithm.

As shown in Fig. 18, it shows that the baseline algorithm
and DNM at different attack strengths: (1) The ratio of the
count of nodes detected; (2) The ratio of the count of addi-
tional packets to be transmitted for detection. As the attack
strength increases, the detection performance of both algo-
rithms tends to stabilize, and the ratios also tend to stabilize.
The count of detection packets required by DNM is only

about 15% of the baseline algorithm’s requirements. The
ratio of packets required by DNM is significantly smaller
than that of detected nodes because the baseline algorithm
collects all the data stored in the nodes. In contrast, DNM
only collects some of the data stored in the nodes. These data
are necessary to be used directly to detect malicious nodes.

7 Conclusion and future work

The detection of time-delay attacks in IoT networks is an
open problem. In this paper, we propose the baseline algo-
rithm and DNM, respectively. The baseline algorithm builds
machine learning models for all nodes without selectivity,
which leads to significant energy consumption. In contrast,
DNM relies on node pruning to detect only suspected nodes,
thus reducing energy consumption. Moreover, DNM also
achieves higher detection performance than the baseline
algorithm by model fusion. The experimental results show
that both the baseline algorithm and DNM have good detec-
tion performance. DNM has a higher detection performance
and smaller overhead than the baseline algorithm.

The overhead of our detection algorithms relies on the
forwarding features recorded by the nodes, and sending
these features to the Sink for centralized analysis is a non-
negligible overhead. Therefore, how to use as few features
as possible or fuse features would be an optimization direc-
tion. Furthermore, various attack variants of the time-delay
attack would be further investigated, such as selective
delayed packets and delayed ack message packet delivery.
These attack variants are more difficult to detect. As well as
the hybrid attacks combining time-delay attacks with other
attacks would also be a future research direction.

Author contributions Wenjie Zhao: Conceptualization, Data curation,
Software, Formal analysis, Methodology, Writing - original draft, Writing -
review & editing. Yu Wang: Investigation, Methodology, Software,
Writing - original draft. Wenbin Zhai: Conceptualization, Resources,
Funding acquisition, Project administration, Supervision, Writing -
review & editing. Liang Liu: Methodology, Formal analysis, Supervision,
Writing - review & editing. Yulei Liu: Writing - review & editing.

Funding This work is supported by the National Key R &D Pro-
gram of China under No. 2021YFB2700500 and 2021YFB2700502,
the Open Fund of Key Laboratory of Civil Aviation Smart Airport
Theory and System, Civil Aviation University of China under No.
SATS202206, the National Natural Science Foundation of China under
No. U20B2050, Public Service Platform for Basic Software and Hard-
ware Supply Chain Guarantee under No. TC210804A.

Data availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on
reasonable request.

Declarations

Ethics approval Not applicable.

Fig. 17 The count of nodes detected after the attack

Fig. 18 The ratio of DNM to baseline algorithm after the attack: the count
of detected nodes and the count of additional detected packets transmitted

1308 Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

Consent to publish All of the authors have approved the contents of
this paper and have agreed to the submission policies of Peer-to-Peer
Networking and Applications.

Conflict of interest We declare that we have no competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

 1. Aheleroff S, Xu X, Lu Y, Aristizabal M, Velásquez JP, Joa B,
Valencia Y (2020) Iot-enabled smart appliances under industry
4.0: A case study. Adv Eng Inform 43. https:// doi. org/ 10. 1016/j.
aei. 2020. 101043

 2. Viswanath SK, Yuen C, Tushar W, Li W-T, Wen C-K, Hu K,
Chen C, Liu X (2016) System design of the internet of things for
residential smart grid. IEEE Wirel Commun 23(5):90–98. https://
doi. org/ 10. 1109/ MWC. 2016. 77217 47

 3. Fang S, Da Xu L, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014)
An integrated system for regional environmental monitoring and
management based on internet of things. IEEE Trans Industr Inf
10(2):1596–1605. https:// doi. org/ 10. 1109/ TII. 2014. 23026 38

 4. Wang D, Chen D, Song B, Guizani N, Yu X, Du X (2018) From
iot to 5g i-iot: The next generation iot-based intelligent algorithms
and 5g technologies. IEEE Commun Mag 56(10):114–120. https://
doi. org/ 10. 1109/ MCOM. 2018. 17013 10

 5. Pokhrel SR, Vu HL, Cricenti AL (2019) Adaptive admission con-
trol for iot applications in home wifi networks. IEEE Trans Mob
Comput 19(12):2731–2742. https:// doi. org/ 10. 1109/ TMC. 2019.
29357 19

 6. Li Y, Chi Z, Liu X, Zhu T (2018). Passive-zigbee: Enabling zigbee
communication in iot networks with 1000x+ less power consump-
tion. In: Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, pp. 159–171. https:// doi. org/ 10. 1145/
32747 83. 32748 46

 7. Kim H-S, Ko J, Culler DE, Paek J (2017) Challenging the ipv6
routing protocol for low-power and lossy networks (rpl): A survey.
IEEE Commun Surv Tutorials 19(4):2502–2525. https:// doi. org/
10. 1109/ COMST. 2017. 27516 17

 8. Deogirikar J, Vidhate A (2017) Security attacks in iot: A survey.
In: 2017 International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud)(I-SMAC), pp. 32–37. https:// doi.
org/ 10. 1109/I- SMAC. 2017. 80583 63

 9. Stellios I, Kotzanikolaou P, Psarakis M, Alcaraz C, Lopez J (2018)
A survey of iot-enabled cyberattacks: Assessing attack paths to
critical infrastructures and services. IEEE Commun Surv Tutorials
20(4):3453–3495. https:// doi. org/ 10. 1109/ COMST. 2018. 28555 63

 10. Prathapchandran K, Janani T (2021) A trust aware security mecha-
nism to detect sinkhole attack in rpl-based iot environment using
random forest-rftrust. Comput Netw 198:108413. https:// doi. org/
10. 1016/j. comnet. 2021. 108413

 11. Divya K, Jaipriya S, Anitha G, Malathy S, Maheswar R (2018) An
energy efficient technique for time sensitive application using mc-
wsn. In: 2018 2nd International Conference on Inventive Systems
and Control (ICISC), pp. 1451–1455. https:// doi. org/ 10. 1109/
ICISC. 2018. 83990 48

 12. Poe WY, Schmitt JB (2008) Placing multiple sinks in time-sensitive
wireless sensor networks using a genetic algorithm. In: 14th GI/ITG
Conference-Measurement, Modelling and Evalutation of Computer
and Communication Systems, pp. 1–15

 13. Korala H, Georgakopoulos D, Jayaraman PP, Yavari A (2022) A
survey of techniques for fulfilling the time-bound requirements

of time-sensitive iot applications. ACM Comput Surv. https:// doi.
org/ 10. 1145/ 35104 11

 14. Song H, Zhu S, Cao G (2007) Attack-resilient time synchroniza-
tion for wireless sensor networks. Ad Hoc Netw 5(1):112–125.
https:// doi. org/ 10. 1016/j. adhoc. 2006. 05. 016

 15. Lee JH, Shin J, Realff MJ (2018) Machine learning: Overview
of the recent progresses and implications for the process systems
engineering field. Comput Chem Eng 114:111–121. https:// doi.
org/ 10. 1016/j. compc hemeng. 2017. 10. 008

 16. Chen Z, Liu J, Shen Y, Simsek M, Kantarci B, Mouftah HT, Djukic
P (2022) Machine learning-enabled iot security: Open issues and
challenges under advanced persistent threats. ACM Comput Surv
55(5):1–37. https:// doi. org/ 10. 1145/ 35308 12

 17. Huang X, Wu Y (2022) Identify selective forwarding attacks using
danger model: Promote the detection accuracy in wireless sensor
networks. IEEE Sens J 22(10):9997–10008. https:// doi. org/ 10.
1109/ JSEN. 2022. 31666 01

 18. Ding J, Wang H, Wu Y (2022) The detection scheme against
selective forwarding of smart malicious nodes with reinforcement
learning in wireless sensor networks. IEEE Sens J 22(13):13696–
13706. https:// doi. org/ 10. 1109/ JSEN. 2022. 31764 62

 19. Chen X, Feng W, Luo Y, Shen M, Ge N, Wang X (2022) Defend-
ing against link flooding attacks in internet of things: A bayesian
game approach. IEEE Internet Things J 9(1):117–128. https:// doi.
org/ 10. 1109/ JIOT. 2021. 30935 38

 20. Srinivas TAS, Manivannan S (2020) Prevention of hello flood
attack in iot using combination of deep learning with improved
rider optimization algorithm. Comput Commun 163:162–175.
https:// doi. org/ 10. 1016/j. comcom. 2020. 03. 031

 21. Teng Z, Du C, Li M, Zhang H, Zhu W (2022) A wormhole attack
detection algorithm integrated with the node trust optimization
model in wsns. IEEE Sens J 22(7):7361–7370. https:// doi. org/ 10.
1109/ JSEN. 2022. 31528 41

 22. Pu C, Choo K-KR (2022) Lightweight sybil attack detection in iot
based on bloom filter and physical unclonable function. Comput
Secur 113:102541. https:// doi. org/ 10. 1016/j. cose. 2021. 102541

 23. Alghamdi R, Bellaiche M (2023) A cascaded federated deep
learning based framework for detecting wormhole attacks in iot
networks. Comput Secur 125:103014. https:// doi. org/ 10. 1016/j.
cose. 2022. 103014

 24. Kim J-D, Ko M, Chung J-M (2022) Physical identification based
trust path routing against sybil attacks on rpl in iot networks. IEEE
Wireless Commun Lett 11(5):1102–1106. https:// doi. org/ 10. 1109/
LWC. 2022. 31578 31

 25. Moradi M, Jahangir AH (2021) A new delay attack detection
algorithm for ptp network in power substation. Int J Electr Power
Energy Syst 133:107226. https:// doi. org/ 10. 1016/j. ijepes. 2021.
107226

 26. Moussa B, Kassouf M, Hadjidj R, Debbabi M, Assi C (2020) An
extension to the precision time protocol (ptp) to enable the detec-
tion of cyber attacks. IEEE Trans Industr Inf 16(1):18–27. https://
doi. org/ 10. 1109/ TII. 2019. 29439 13

 27. Wang J, Peng C (2017) Analysis of time delay attacks against power
grid stability. In: Proceedings of the 2nd Workshop on Cyber-Physical
Security and Resilience in Smart Grids, pp. 67–72. https:// doi. org/ 10.
1145/ 30553 86. 30553 92

 28. De Pace G, Wang Z, Benin J, He H, Sun Y (2020) Evaluation of
communication delay based attack against the smart grid. In: 2020
IEEE Kansas Power and Energy Conference (KPEC), pp. 1–6.
https:// doi. org/ 10. 1109/ KPEC4 7870. 2020. 91675 43

 29. Lou X, Tran, C, Yau DK, Tan R, Ng H, Fu, TZ, Winslett M
(2019) Learning-based time delay attack characterization for
cyber-physical systems. In: 2019 IEEE International Conference
on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), pp. 1–6 . https:// doi. org/ 10.
1109/ Smart GridC omm. 2019. 89097 32

https://doi.org/10.1016/j.aei.2020.101043
https://doi.org/10.1016/j.aei.2020.101043
https://doi.org/10.1109/MWC.2016.7721747
https://doi.org/10.1109/MWC.2016.7721747
https://doi.org/10.1109/TII.2014.2302638
https://doi.org/10.1109/MCOM.2018.1701310
https://doi.org/10.1109/MCOM.2018.1701310
https://doi.org/10.1109/TMC.2019.2935719
https://doi.org/10.1109/TMC.2019.2935719
https://doi.org/10.1145/3274783.3274846
https://doi.org/10.1145/3274783.3274846
https://doi.org/10.1109/COMST.2017.2751617
https://doi.org/10.1109/COMST.2017.2751617
https://doi.org/10.1109/I-SMAC.2017.8058363
https://doi.org/10.1109/I-SMAC.2017.8058363
https://doi.org/10.1109/COMST.2018.2855563
https://doi.org/10.1016/j.comnet.2021.108413
https://doi.org/10.1016/j.comnet.2021.108413
https://doi.org/10.1109/ICISC.2018.8399048
https://doi.org/10.1109/ICISC.2018.8399048
https://doi.org/10.1145/3510411
https://doi.org/10.1145/3510411
https://doi.org/10.1016/j.adhoc.2006.05.016
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1016/j.compchemeng.2017.10.008
https://doi.org/10.1145/3530812
https://doi.org/10.1109/JSEN.2022.3166601
https://doi.org/10.1109/JSEN.2022.3166601
https://doi.org/10.1109/JSEN.2022.3176462
https://doi.org/10.1109/JIOT.2021.3093538
https://doi.org/10.1109/JIOT.2021.3093538
https://doi.org/10.1016/j.comcom.2020.03.031
https://doi.org/10.1109/JSEN.2022.3152841
https://doi.org/10.1109/JSEN.2022.3152841
https://doi.org/10.1016/j.cose.2021.102541
https://doi.org/10.1016/j.cose.2022.103014
https://doi.org/10.1016/j.cose.2022.103014
https://doi.org/10.1109/LWC.2022.3157831
https://doi.org/10.1109/LWC.2022.3157831
https://doi.org/10.1016/j.ijepes.2021.107226
https://doi.org/10.1016/j.ijepes.2021.107226
https://doi.org/10.1109/TII.2019.2943913
https://doi.org/10.1109/TII.2019.2943913
https://doi.org/10.1145/3055386.3055392
https://doi.org/10.1145/3055386.3055392
https://doi.org/10.1109/KPEC47870.2020.9167543
https://doi.org/10.1109/SmartGridComm.2019.8909732
https://doi.org/10.1109/SmartGridComm.2019.8909732

1309Peer-to-Peer Networking and Applications (2023) 16:1286–1309

1 3

 30. Abbasspour A, Sargolzaei A, Victorio M, Khoshavi N (2020) A
neural network-based approach for detection of time delay switch
attack on networked control systems. Procedia Computer Science
168:279–288. https:// doi. org/ 10. 1016/j. procs. 2020. 02. 250

 31. Ganesh P, Lou X, Chen Y, Tan R, Yau DKY, Chen D, Winslett M
(2021) Learning-based simultaneous detection and characteriza-
tion of time delay attack in cyber-physical systems. IEEE Trans
Smart Grid 12(4):3581–3593. https:// doi. org/ 10. 1109/ TSG. 2021.
30586 82

 32. Sargolzaei A, Yen KK, Abdelghani MN (2015) Preventing time-
delay switch attack on load frequency control in distributed power
systems. IEEE Trans Smart Grid 7(2):1176–1185. https:// doi. org/
10. 1109/ TSG. 2015. 25034 29

 33. Victorio M, Sargolzaei A, Khalghani MR (2021) A secure control
design for networked control systems with linear dynamics under
a time-delay switch attack. Electronics 10(3):322. https:// doi. org/
10. 3390/ elect ronic s1003 0322

 34. Altaf A, Abbas H, Iqbal F, Khan MMZM, Rauf A, Kanwal T
(2021) Mitigating service-oriented attacks using context-based
trust for smart cities in iot networks. J Syst Archit 115:102028.
https:// doi. org/ 10. 1016/j. sysarc. 2021. 102028

 35. Mabodi K, Yusefi M, Zandiyan S, Irankhah L, Fotohi R (2020)
Multi-level trust-based intelligence schema for securing of inter-
net of things (iot) against security threats using cryptographic
authentication. J Supercomput 76(9):7081–7106. https:// doi. org/
10. 1007/ s11227- 019- 03137-5

 36. Liu L, Ma Z, Meng W (2019) Detection of multiple-mix-attack
malicious nodes using perceptron-based trust in iot networks.
Futur Gener Comput Syst 101:865–879. https:// doi. org/ 10. 1016/j.
future. 2019. 07. 021

 37. Liu L, Xu X, Liu Y, Ma Z, Peng J (2021) A detection framework
against cpma attack based on trust evaluation and machine learn-
ing in iot network. IEEE Internet Things J 8(20):15249–15258.
https:// doi. org/ 10. 1109/ JIOT. 2020. 30476 42

 38. Ma Z, Liu L, Meng W (2020) Towards multiple-mix-attack detec-
tion via consensus-based trust management in iot networks. Com-
put Secur 96:101898. https:// doi. org/ 10. 1016/j. cose. 2020. 101898

 39. Singh M, Sardar AR, Majumder K, Sarkar SK (2017) A light-
weight trust mechanism and overhead analysis for clustered wsn.
IETE J Res 63(3):297–308. https:// doi. org/ 10. 1080/ 03772 063.
2017. 12846 13

 40. Poongodi T, Khan MS, Patan R, Gandomi AH, Balusamy B
(2019) Robust defense scheme against selective drop attack in
wireless ad hoc networks. IEEE Access 7:18409–18419. https://
doi. org/ 10. 1109/ ACCESS. 2019. 28960 01

 41. Eskandari M, Janjua ZH, Vecchio M, Antonelli F (2020) Passban
ids: An intelligent anomaly-based intrusion detection system for

iot edge devices. IEEE Internet Things J 7(8):6882–6897. https://
doi. org/ 10. 1109/ JIOT. 2020. 29705 01

 42. Nguyen TD, Marchal, S, Miettinen M, Fereidooni H, Asokan
N, Sadeghi AR (2019) Dïot: A federated self-learning anomaly
detection system for iot. In: 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), pp. 756–767.
https:// doi. org/ 10. 1109/ ICDCS. 2019. 00080

 43. Moussa B, Debbabi M, Assi C (2016) A detection and mitigation
model for ptp delay attack in an iec 61850 substation. IEEE Trans
Smart Grid 9(5):3954–3965. https:// doi. org/ 10. 1109/ TSG. 2016.
26446 18

 44. Suhail S, Hussain R, Abdellatif M, Pandey SR, Khan A, Hong CS
(2020) Provenance-enabled packet path tracing in the rpl-based
internet of things. Comput Netw 173:107189. https:// doi. org/ 10.
1016/j. comnet. 2020. 107189

 45. Rousseeuw PJ, Croux C (1993) Alternatives to the median abso-
lute deviation. J Am Stat Assoc 88(424):1273–1283. https:// doi.
org/ 10. 1080/ 01621 459. 1993. 10476 408

 46. Chen Z, Song S, Wei Z, Fang J, Long J (2021) Approximating
median absolute deviation with bounded error. Proceedings of the
VLDB Endowment 14(11):2114–2126. https:// doi. org/ 10. 14778/
34762 49. 34762 66

 47. Ganesh P, Lou X, Chen Y, Tan R, Yau DK, Chen D, Winslett M
(2021) Learning-based simultaneous detection and characteriza-
tion of time delay attack in cyber-physical systems. IEEE Trans
Smart Grid 12(4):3581–3593. https:// doi. org/ 10. 1109/ TSG. 2021.
30586 82

 48. Sak H, Senior AW, Beaufays F (2014) Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling. In: INTERSPEECH, pp. 338–342

 49. Ganti RK, Jayachandran P, Luo H, Abdelzaher TF (2006) Datalink
streaming in wireless sensor networks. In: Proceedings of the 4th
International Conference on Embedded Networked Sensor Sys-
tems, pp. 209–222. http:// doi. org/ 10. 1145/ 11828 07. 11828 29

 50. Osterlind F, Dunkels A, Eriksson, J, Finne N, Voigt T (2006)
Cross-level sensor network simulation with cooja. In: Proceed-
ings. 2006 31st IEEE Conference on Local Computer Networks,
pp. 641–648. https:// doi. org/ 10. 1109/ LCN. 2006. 322172

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/j.procs.2020.02.250
https://doi.org/10.1109/TSG.2021.3058682
https://doi.org/10.1109/TSG.2021.3058682
https://doi.org/10.1109/TSG.2015.2503429
https://doi.org/10.1109/TSG.2015.2503429
https://doi.org/10.3390/electronics10030322
https://doi.org/10.3390/electronics10030322
https://doi.org/10.1016/j.sysarc.2021.102028
https://doi.org/10.1007/s11227-019-03137-5
https://doi.org/10.1007/s11227-019-03137-5
https://doi.org/10.1016/j.future.2019.07.021
https://doi.org/10.1016/j.future.2019.07.021
https://doi.org/10.1109/JIOT.2020.3047642
https://doi.org/10.1016/j.cose.2020.101898
https://doi.org/10.1080/03772063.2017.1284613
https://doi.org/10.1080/03772063.2017.1284613
https://doi.org/10.1109/ACCESS.2019.2896001
https://doi.org/10.1109/ACCESS.2019.2896001
https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/JIOT.2020.2970501
https://doi.org/10.1109/ICDCS.2019.00080
https://doi.org/10.1109/TSG.2016.2644618
https://doi.org/10.1109/TSG.2016.2644618
https://doi.org/10.1016/j.comnet.2020.107189
https://doi.org/10.1016/j.comnet.2020.107189
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.1080/01621459.1993.10476408
https://doi.org/10.14778/3476249.3476266
https://doi.org/10.14778/3476249.3476266
https://doi.org/10.1109/TSG.2021.3058682
https://doi.org/10.1109/TSG.2021.3058682
http://doi.org/10.1145/1182807.1182829
https://doi.org/10.1109/LCN.2006.322172

	Efficient time-delay attack detection based on node pruning and model fusion in IoT networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Internal attacks in IoT
	2.2 Time-delay attack
	2.3 Detection based on trust value mechanism

	3 System model
	3.1 Network Model
	3.2 Attack model

	4 Baseline detection algorithm for time-delay attacks
	4.1 The framework of baseline algorithm
	4.1.1 The collection and processing of packet delivery and node context information (see Section 4.2 for details)
	4.1.2 Forwarding delay model training and malicious node detection (see Section 4.3 for details)

	4.2 The collection and processing of packet delivery and node context information
	4.2.1 Collecting packet delivery and node context information
	4.2.2 Getting the routing path of each packet
	4.2.3 Extracting the samples based on routing paths
	4.2.4 Aggregating the samples of relay nodes as datasets

	4.3 Forwarding delay model training and malicious node detection
	4.3.1 Training process
	4.3.2 Detection process
	4.3.3 Voting for malicious nodes

	5 Detection algorithm based on Node pruning and Model fusion for time-delay attacks
	5.1 The overall architecture of DNM
	5.1.1 Node pruning
	5.1.2 Model fusion

	5.2 Node pruning
	5.2.1 Getting the routing path of all packets through lightweight packet path tracing algorithm
	5.2.2 Grouping the packets according to their routing paths
	5.2.3 Assigning reputation values to routing paths based on the outlier detection results
	5.2.4 Aggregating the reputation values of the relay nodes

	5.3 Model fusion
	5.3.1 Collecting packet delivery and node context information
	5.3.2 Forwarding delay fusion model training and malicious node detection

	5.4 Complexity analysis
	5.4.1 The time complexity of DNM
	5.4.2 Comparison with other algorithms

	6 Performance evaluation
	6.1 Metrics
	6.2 Environment and parameter settings
	6.3 Comparison of single model and fusion model
	6.4 Comparison of different algorithms
	6.4.1 Impact of the strength of attack
	6.4.2 Impact of the probability of attack
	6.4.3 Impact of the percentage of malicious nodes
	6.4.4 Impact of the count of nodes
	6.4.5 The summary of performance comparison

	6.5 Comparison of energy consumption for the baseline algorithm and DNM
	6.5.1 Comparison of detection packets collected before the attack
	6.5.2 Comparison of detection packets collected after the attack

	7 Conclusion and future work
	References

